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Executable  Packers. Reverse engineering compiled 
binaries is itself a challenge. In the process that we can call 
“forward engineering”, compiler generates the code that is not 
intended to be explored and comprehended (not to mention 
– modified) by the human being.Diversity of software and 
hardware platforms and corresponding compilers results in 
variety of binary formats and respective runtime execution 
environments;hence the reverse engineering process differs 
significantly for multitude of computing systems. Even for 
same targeted platforms different compilers produce binary 
compatible, yet slightly (and sometimes significantly) different 
code. But as long as the architecture of the compilation platform 
(binary format and instruction set) is openly documented, 
exploring the fragment of compiled code for the most part boils 
down to reading the disassembled listing of programming code 
in the corresponding low-level language (which would be x86 
assembly language for natively compiled executable modules 
and CIL for Microsoft .NET managed binaries, for example). 
In Microsoft Windows family of operating systems, Portable 
Executable (PE) is the universal file format for executable 
binaries (primarily EXE and DLL files).

While analyzing disassembly is far more complicated 
task than reading human-written source code of the same 
low-level language, it is still an affordable affair for the 
motivated researcher. In the process of reverse engineering 
compiler-produced executable modules, analystis presented 
to the number of natural obstacles (caused by the very fact 
that compiled binaries are targeted to efficient execution 
in corresponding software and/or hardware environments, 
rather than to being explored for logical re-analysis), but 
there are no artificial barriers specifically designed to hinder 
the process. Compiler authors are not motivated, obviously, 
to artificially impede the subsequent reverse engineering 
attempts. For this reason, such binaries are practically 
unprotected against reverse engineering endeavors.

But some developers have a need to make their compiled 
binaries (and sometimes the associated supplementary data 
files) as resistant to reverse engineering as possible. Mostly 
there are two categories of people that are interested in this: 
First are shareware software authors, who are concerned 
about software piracy – reverse code engineering is the 
primary discipline responsible for breaking legitimate 
licensing schemas which enables mislicensing, unauthorized 
reproduction and illegal distribution of software; The other 
group of people interested in protecting their code from 
being analyzed are malware authors – reverse engineering 
viral code modules is the key measure in fighting against 
malware. As a result, whole lot of anti-reverse-engineering 
techniques have been developed over time to prevent, or at 
least slow down, the analysis and/or modification attempts 
on executable modules. Dedicated software protection 
systems have been implemented, usually realized in the 
form of executable module packers.

The essence of executable packers. The executable 
packer is a software system used to compress, and in case 
of protectors – also protect (via payload encryption and 
various anti-reverse-engineering techniques), the compiled 

binary files. They originated to minimize executable file 
size in an effort to reduce associated disk space and network 
bandwidth usage. Packers can be divided into two major 
categories: the ones designed for executable compression 
only, and the ones that focus on executable protection 
from reverse code engineering, incorporating variety of 
appropriate techniques in addition to compressing the 
binary module. While no strict definitions exist, the latter 
are commonly called protectors, and former are referred 
to as compressors, or more often – just packers. To 
avoid ambiguity, packer will be used as the general term 
throughout this paper, while compression-only packers 
will be referred to as compressors.

The packer generates new executable from the supplied 
unprotected binary, which has little to no similarity to the 
original. It grabs the original PE module and compresses 
(and optionally encrypts) its sections into an archive that is 
added to the newly generated PE file as a data section. Some 
sections, like resources, might be opted to be left untouched, 
e.g. to make them statically accessible from the binary file 
to external applications. Then the decompression stub is 
placed in the code section, with a new entry point pointing 
to it. When run, the decompression stub unpacks the sections 
from the archive to their designated memory locations 
(as specified in the original PE header) and takes all the 
necessary actions (like resolving imports, handling module 
relocation, etc.) to ready the original code for execution, and 
then passes the control to the entry point of the original (now 
decompressed) application. This entry point of the original 
executable, where the control flow is firstly transferred from 
packer’s code to the source application, is called Original 
Entry Point – OEP, and plays a very important role in the 
reverse engineering process of the packed executable. 
Packed application’s import table is also different from the 
original, and usually smaller – only consisting of imports 
required to unpacking stub. Application’s original imports 
are reconstructed (though often not in the original shape) and 
resolved after unpacking and before reaching the OEP.

One resulted effect of even simplest executable 
compression is the complication of the reverse engineering 
process: packed binary files no longer contain original 
executable sections in their natural form, so the static analysis, 
as well as direct module patching, becomes practically 
impossible and dynamic analysis is complicated significantly. 
While compressor’s job is relatively straightforward and 
merely resembles the steps pointed out above, protectors 
take the process much further by implementing numerous 
anti-reverse-engineering techniques to hamper the 
analysis and modification attempts even more.To impede 
the comprehension of unpacking logic, the protector’s 
unpacking code is usually self-decrypting and layered – each 
chunk is decrypted dynamically right before its execution, 
also erasing the old chunks of code. The original executable 
payload can also be encrypted multiple times and decryption/
decompression spanned to several stages. While encryption 
key is embedded into the packed payload, this theoretical 
attack vector is not chosen typically by reverse engineers 
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(because decrypting logic is so complicated). Most of the 
packer’s code is heavily obfuscated and armed with numerous 
anti-debug tricks, to ward off attackers before reaching OEP. 
After decompression and decryption of original executable in 
memory, the packer applies relocation fix-ups if required and 
resolves imports, constructing the required Import Address 
Table (IAT) replacement. Finally, the execution jumps to 
the original entry point of the application (saved during the 
packing process).

Most of the stronger protectors ensure that the 
application still maintains the dependency to the packer’s 
body after OEP, e.g. to make dumping of application’s 
sections harder. Code section of the original binary is 
usually modified during the packing process, applying code 
obfuscation, virtualization, import redirection, and other 
anti-analysis and anti-modification techniques, to ensure 
protection after passing control to the original application. 
Also, many software protection system vendors offer 
SDKs which enable software developers to integrate 
protector code at the source level, enabling applications 
to utilize packer’s (heavily protected) code for various 
security-related functionality: from debugger detection 
checks to generating hardware IDs for licensing routines, 
for example. Most protectors also incorporate full-featured 
software licensing solutions (usually accessible via SDKs), 
embedded right into the packer’s code.

Protection techniques. Since the first executable 
packer was released in public, circa 1998, the protection 
technology has been developing constantly to meet the new 
challenges. Today’s protection systems implement so many 
different defensive measures beyond just packing the binary 
modules, that the collective word “packer” might seem a 
little underestimating, but that is just a general term used 
throughout the reverse engineering community. In this section 
I’ll try to review some of the commonly used approaches 
against reverse code engineering, used by modern software 
protection systems. While primarily focused on natively 
compiled executable modules (produced by languages like 
C\C++ and Delphi), many techniques will be relevant, or at 
least conceptually compatible, to other software platforms 
(like byte-code based frameworks, for instance) which store 
compiled code of any type in PE binaries.

Packing consequences. As outlined above, even 
simplest executable compression automatically provides 
multiple benefits from the protector’s perspective:

Preventing static analysis – static disassemblers and 
decompilers are completely ineffective with packed 
binaries as the original sections are simply unavailable 
until runtime; Preventing direct file patching – even if the 
attacker manages to make necessary patching in memory, 
saving changes directly to the binary file is impossible, 
and even though “indirect” methods of patching (known 
as inline patching) make it possible, this significantly 
complicates the attacker’s task. Concealing OEP – there is 
no standard way to determine when the execution reaches 
OEP after unpacking, and this is a significant barrier for 
reverse engineers; as to why – I’d like to elaborate on this 
subject a little bit further:

In almost every reverse engineering session, determining 
the original entry point of application and trapping the 
transition to it from the packer’s code is the key requirement. 
There reason for this is twofold. Firstly, analyzing complex 
applications are frequently started from the entry point, 
otherwise comprehension of the whole picture could be 
hard or even impossible. In some cases, mostly with a 

GUI applications or DLL binaries, this might not be the 
necessity, but the ability to trace the execution from its very 
beginning is usually a big help for the analysis. Secondly, 
module dumping – which is the primary technique used for 
unprotecting packed applications after they are decrypted 
in memory, is possible at the OEP only, at least for the 
natively compiled applications. The reason for this is that 
after OEP the data section of file might be modified, which 
makes dumping dangerous (as the resulted section(s) will 
not be in original state anymore), plus the OEP should be 
known to be correctly specified in the PE header of the 
dump. As a side note: this usually is not the case with .NET 
assemblies protected with general-purpose (i.e. not .NET-
specific) packers, where dumping is normally possible at 
any time after program’s execution.

Debug prevention. Binary-level debugger is the main 
weapon against packers in hands of reverse engineer. Hence 
debugger detection and prevention at runtime is one of the 
central objectives of any protector. Variety of techniques 
exists to determine whether current process is being 
debugged or not. In case of debugger detection, actions vary 
from immediate process termination to concealed corruption 
of important runtime data structures to digressthe application 
from normal execution path, without reverser suspecting the 
reason for program’s misbehavior. Many techniques are built 
upon the undocumented features of the platformarchitecture, 
so the implementations are often OS version specific.

Exploiting PEB fields. Process Environment Block 
(PEB) is the semi-documented runtime data structure 
available in every process, representing some of the process’ 
important properties. Designed to be used by the application-
mode code in the operating system libraries for internal 
needs, couple of its fields contain different values when the 
process is being debugged, and this can be exploited for 
debugger detection. While dedicated Win32 API exists for 
this purpose, namely kernel32.IsDebuggerPresent(), which 
determines debugger presence based on one of the fields of 
PEB, it is more common for the protectors to read values 
directly from PEB structure, because that API is well-known 
and easily patchable for most reverse engineers.

Inspecting process’ heaps. When the application is 
being debugged, each heap of the process has certain flags 
set in its header, which subsequently result in appending 
special sequence of bytes to the end of each heap allocation–
technique designed for easy buffer overflow detection. 
While the heap structure is officially undocumented, it has 
been researched by reverse engineers for various purposes. 
The protector can check for these flags or directly for the 
special signature of bytes, in any of the process’ heaps to 
determine if the process was created in the debug mode. 
The main heap of the process (pointed to by the PEB.
ProcessHeap field) is the common target of exploitation, 
but the other heaps can be inspected as well.

Utilizing undocumented low-level APIs. At the 
lowest level of Win32 API, in ntdll.dll module, 
there are couple of functions that, when called with 
appropriate (mostly undocumented) arguments, provide 
interesting information about debug session, if present.
ZwQueryInformationProcess() and ZwQueryObject() are 
such API functions, that indirectly, though reliably, can be 
used to trap the presence of active debugger.

Checking for debug privileges.Debuggers need to 
acquire SeDebugPrivilegeright to debug another application. 
The ordinary applications usually do not have this privilege 
present in the access token of the process, but when the 
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process is created by the debugger it usually inherits this 
privilege, and this provides another possibility to determine 
debugger’s presence. Protectors can check for this privilege, 
usually indirectly – attempting to execute actions that could 
only succeed with debug privileges. One common way is to 
try opening csrss.exe system process – an attempt that should 
fail from non-debugged applications. It is even possible to 
cause BSOD when SeDebugPrivilegeis available. Indirect 
ways of testing for the presence of debug privileges make 
this method a powerful debugger detection trick.

Manipulating SEH mechanism.Structured Exception 
Handling (SEH) is the native exception handling 
mechanism for Windows. Variety of anti-debug techniques 
employ on it, because of its special characteristics related 
to debugging. When the exception is generated, it is firstly 
passed to the debugger – if such is attached to the process. 
The debugger can then either consume it, or ignore – pass it 
to the application’s event handler. The protector can install 
its own exception handler and then deliberately generate 
some exception, e.g. via dereferencing invalid pointer, 
dividing by zero, or even using kernel32.RaiseException() 
(or lower-level ntdll.RtlRaiseException()) system API. If 
the debugger will “swallow” (i.e. not pass to the application) 
the exception (and this is usually the default behavior), 
protection code will deduce debugger’s presence.

In such cases, when the application expects to receive 
these exceptions, the debugger can be configured to pass 
all or specific exceptions to the program, but protectors 
have more tricks to circumvent this. The frequently used 
API kernel32.CloseHandle() (more precisely the lower-
level ntdll.ZwClose() function it is based onto) will throw 
EXCEPTION_INVALID_HANDLE (0xC0000008) exc-
eption when passed an invalid handle value, but only when 
the debugger is attached. The protector can monitor for 
this behavior by deliberately passing the invalid handle to 
the function. In such case, in order to avoid detection, the 
attacker should not pass the exception to the program.

Another interesting method is generating DBG_
PRINTEXCEPTION_C exception, which – as opposed to 
most of other exceptions – is unconditionally consumed 
by many debuggers, because it represents the means of 
passing the diagnostic textual messages to the debugger 
(functionality wrapped by kernel32.OutputDebugStringW()
and similar APIs) and hence is not expected to be of any 
use for the application code itself.

One more interesting anti-debug trick is installing 
the last-resort exception handler via kernel32.
SetUnhandledExceptionFilter() system API. While normally 
catching unhandled exceptions (purposely generated by 
the protector) when the application is not being debugged, 
when the debugger is attached to the process such handler 
will not be called, even when explicitly instructing the 
debugger to pass exception to the program.

Structured Exception Handling mechanism can also be used 
to manipulate the execution flow of the application, complicating 
the analysis process for the reverse engineer. Variations 
of discussed techniques can be combined to significantly 
complicate the debugging session for the attacker.

Breakpoint detection. Software breakpoints are usually 
realized in form of the one-byte INT3instruction (opcode 
0xCC), which causes the processor interrupt that is handled 
by the debugger. When placing such breakpoint, first byte 
of the target instruction is overwritten with 0xCC byte, 
and when it gets hit the debugger restores original byte to 
continue execution. Memory CRC checks can be effectively 

used to detect software breakpoints, because code has to be 
modified when placing them. First bytes of known internal 
or imported functions, as well as small critically important 
code fragments, can be checked directly for the value of 
this opcode. Checking the return address of current function 
for this value is a very effective anti-tracing technique, as 
the debugger usually places such breakpoint after target 
function when performing the “step-over” functionality.

When software breakpoints are being detected, attacker 
might opt to use hardware breakpoints instead. They are 
implemented by means of special debug registers of CPU, 
where up to four memory addresses can be stored to be 
monitored not only for code execution, but for read or write 
memory access as well. Detecting hardware breakpoints 
is possible by inspecting the appropriate debug registers. 
This can be accomplished by retrieving the CONTEXT 
structure of current thread, either by explicitly calling 
the ntdll.ZwGetContextThread() API with CONTEXT_
DEBUG_REGISTERSflag, or by artificially generating any 
exception and receiving pointer to the CONTEXT structure 
as indirect argument in the associated exception handler.

Alternatively, instead of detecting breakpoints, 
protector can try to blindly erase themperiodically, without 
even checking whether they exist. In case of software 
breakpoints, this is possible by overwriting important code 
fragments, desirably whole code section, from the file 
on disk. This will make all software breakpoints in that 
fragment disappear. With hardware breakpoints, the debug 
registers can be nullified to achieve the same results.

Execution timing. When the debugger intervenes in 
the program’s execution, for example when processing 
breakpoints or generated exceptions, the execution is usually 
slowed down significantly. The protector can measure 
the amount of time spent for the execution of important 
code fragments, and deduce if the process was suspended 
meanwhile – presumably by the debugger. RDTSC assembly 
instruction can be used for such purposes, which returns 
internal CPU timestamp counter stored in one of its MSR 
registers. Alternatively, kernel32.GetTickCount() API can 
be used to get the system’s uptime counter, or it can even be 
read directly from the specific user-mode memory location 
where it is constantly updated by the operating system’s 
kernel code. When carefully concealed by code obfuscation 
techniques, execution time monitoring can become very 
effective debugger prevention measure.

Hiding the thread from debugger.The ntdll.
ZwSetInformationThread function is officially documented 
as a routine that can be used to change the priority 
of a thread. But when it receives the undocumented 
HideThreadFromDebugger (0x11) info-class value as 
an argument, it sets the appropriate flag in the thread’s 
ETHREAD kernel structure, causing all debug events 
associated to that thread to be discarded without passing 
them to the attached debugger. This means that the 
debugger will no longer be notified about breakpoints 
hit, or generated exceptions, for example. In case of the 
application’s main thread, it won’t even receive the process 
termination notification. This will effectively render the 
debugger useless for the most part.

Avoiding debugger attach. Sometimes, especially 
when the unpacking code of the protector is hard for the 
reverser to trace and finding OEP is not required,it might 
be preferred to attach the debugger to thealready running 
process, instead of starting the application under the 
debugger. When this happens, the operating system creates 
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a new thread in the target process, with an entry point at 
ntdll.DbgUiRemoteBreakin() routine which calls ntdll.
DbgBreakPoint() function consisting of only one instruction 
– the INT3 software breakpoint. When this breakpoint is 
triggered, the first notification is sent to the debugger, the 
newly created thread terminates and the attach procedure 
is complete. In order to avoid attaching the debugger, the 
protector can patch either the DbgUiRemoteBreakin() or 
the DbgBreakPoint() function, and redirect to the kernel32.
ExitProcess() API for example. In such scenario the 
application process will terminate as soon as any debugger 
will attempt attaching to it.

Self-debugging. The application can spawn a copy of 
itself as a new processand attach to it as a debugger. The 
real application logic will be executed in the child process. 
As there can’t be more than one debugger attached to any 
process at the same time, the attacker will not be able to 
attach its own debugger to the child. Terminating the parent 
process will result in termination of the child process. 
This technique is not too hard to circumvent in its trivial 
implementation, by injecting the code in debugger process 
and detaching it from there, but some realty powerful 
protection mechanisms can be built onthis concept. One 
such example is the “Nanomites” technology from the 
Armadillo software protection system. When protecting, 
it replaces the conditional jumps in original application’s 
code section with INT3 software breakpoints, and then 
uses debugging at runtime to control the child process. 
When such breakpoint is hit, the parent process that acts 
as a debugger determines the destination of the conditional 
jump and the exact type of branching instruction (from its 
heavily encrypted tables), and whether it should be taken or 
not (based on the value of the flags CPU register) and then, 
modifying the instruction pointer, resumes the execution 
flow accordingly. In this case it is not easy to detach the 
parent (debugger) process, as the child process simply 
cannot function without it.

Targeting specific debuggers.The number of popular 
debuggers most frequently utilized by the professional 
reverse engineers can be counted on the fingers of one 
hand. Nowadays just two of them are used in vast majority 
of the reverse engineering sessions. While most of the anti-
debug techniques are more or less universal, in a sense 
that they can be equally successfully used for detection of 
any application debugger, some methods can be uniquely 
designed to target the specific one. This might be the bug 
exploited in the specific debugger, or the global operating 
system objects created by it, for example. One trivial 
(but by no means ineffective) method is enumerating and 
inspecting the window names in the system, in a search for 
a predefined text, characteristic to the specific debugger.

Dump prevention. To unprotect the packed applications, 
in many cases it is necessary to “unpack” them, i.e. to 
recover the application in its original form – removing the 
protector’s cover, in order to ease the analysis process and/
or make the permanent binary patching possible. The key 
to this job is the process dumping – grabbing the image 
of the process from the memory after its original sections 
have been fully decrypted there. Usually the dumping is 
only possible when the execution is paused at the OEP, for 
the reasons already explained previously. If the protectors 
did not retain any dependencies to the application after 
unpacking it (just as compressor packers work), it would 
be easy to unprotect them just by dumping the module’s 
sections from the memory after reaching the OEP. But 

today’s protectors employ variety of techniques to prevent or 
at least complicate this process. Anti-dumping mechanisms 
are built into every strong protection system.

Damaging the PE header.PE header is the crucial part 
of any PE module and describes the binary’s contents 
and characteristics in detail. It is mostly utilized during 
the module loading phase, when the operating system’s 
loader reads various parameters from it, and is rarely 
referred to afterwards. For successful dumping various 
fields of the header are read by the dumper programs, and 
they can be damaged by the protector to prevent dumping. 
Some of these fields are completely ignored by the OS 
loader (they serve the diagnostic purposes only), but not 
ignored by many debuggers and process dumpers, which 
means that such binary can be loaded and run successfully 
by the operating system, while unexpected errors might 
occur when trying to dump or even debug them. The 
even more radical approach would be erasing the whole 
header, especially the section table, after the module has 
been loaded, to neutralize many dumpers that rely on it, 
but this method isless frequently used by the protectors, as 
some APIs will still need to reference it at runtime, e.g. for 
loading resources from the module.

Damaging the SizeOfImage parameter of the 
module. The Ldr field of the PEB structure points to the 
PEB_LDR_DATA structure that contains the list of all 
modules present in the process and their parameters. Its 
InLoadOrderModuleList member contains the list of 
loaded modules, sorted by the time of their loading. Each 
of the modules is described by LDR_MODULE structure, 
SizeOfImage field of which represents the size of the 
module in memory. It is set by the OS loader from one 
of the fields of the PE header when the module is loaded. 
Many dumpers rely on this value to determine the region of 
memory that belongs to the specific module, and damaging 
it by specifying some enormously large bogus number 
would most probably render them unusable.

On-demand code decryption. Most of the packers fully 
decrypt the whole application before passing control to the 
OEP, and this is the major weakness of the whole concept 
of an executable packing in general. But there exist some 
implementations where this is not really a case. It is possible 
to dynamically decrypt only those parts of the program that 
need to be executed or accessed next, and then preferably 
erase them later – without exposing the whole picture of the 
application’s sectionsto the attacker at any given moment 
of time. Each section of the executable binary is usually 
one atomic structure, not quite divisible by any standard 
means, so there aren’t many ways of implementing this 
concept. Generic method that can be used to protect any 
binary with this technique is based on the memory guard 
page mechanism of Windows. A guard page provides a 
one-shot alarm for memory page access – memory region 
can be marked as guard pages, and any attempt to access 
them will cause the system to raise a STATUS_GUARD_
PAGE_VIOLATION (0x80000001) exception (turning off 
the guard page status at the same time). The protector can 
intercept this exception, check the destination address, and 
if it falls in the specific range, decrypt the appropriate part 
of the protected section. To make dumping and analysis 
even harder, it is possible to erase old pages, e.g. when new 
pages will be triggered, but the performance penalty will 
thenbe an issue in many cases.

Code stealing.Each PE module consists of the PE 
header and multiple sections. When dumping the module 
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from memory, usually only the sections which make up the 
module are grabbed, not any other memory allocations of 
the process. The protector can steal the chunks of the code 
from the code section, and place them in the memory buffer 
(with page execute access) allocated dynamically. There 
will be jumps placed to and from those stolen code buffers 
connecting them to the code section, so the application’s 
execution will not be affected by such modifications. The 
place of stolen bytes in the code section will be filled with 
garbage, and the relocated code will be usually obfuscated 
and interleaved with garbage instructions, to complicate 
the restoration of the code in its original location. As a 
result, when the attacker will dump the module, the code 
section will contain “holes” in place of stolen code chunks, 
consisting of jumps to the nonexistent memory allocations. 
The stolen code can be not only obfuscated, but sometimes 
virtualized or interleaved with anti-debug checks, creating the 
dependencies to the protector’s code section. This techniqueis 
employed by many advanced protections systems and makes 
dumping extremely difficult for reverse engineers.

Manipulating imports mechanism. Practically all PE 
modules import number of functions from some dynamic 
link libraries (DLLs). This is accomplished by the well-
defined imports mechanism. When loading the executable 
binary, Windows’s image loader parses the import table 
and resolves imports by loading referenced libraries and 
constructing Import Address Table (IAT) – an array of 
pointers containing the virtual addresses of the imported 
functions. All invocations of the imported functions in the 
code are made through these pointers. In order to complicate 
the damping process, the protector can eliminate the 
import table and save the names of referenced DLLs and 
corresponding imported functions in its own, obfuscated 
format. During unpacking, before transferring control 
to the OEP, it will determine and resolve all the imports, 
constructing the IAT in a similar manner like the operating 
system’s image loader does. By strippingthe original import 
table, the module’s dump will not be possible to be loaded 
by the OS’s image loader, as it will not have the information 
necessary for building the IAT. The attacker can recover 
this information by scanning the IAT after it has been built 
by the protector and determining the names (or ordinals) 
of the functions (and their exporting modules) pointed 
to by the entries of the IAT. In order to avoid this, some 
protectors employ the import redirection – in the allocated 
buffers they place obfuscated trampoline routines, which 
do nothing but call one of the imported functions. Then 
they place the addresses of these redirection routines in the 
IAT, instead of original function addresses. In this manner, 
original function names can’t be automatically determined 
by just scanning the IAT – the attacker will have to analyze 
each and every such entry of the IAT to deduce to which 
function of which module they are actually redirected. To 
complicate the import reconstruction even more, some 
protectors completely eliminate the use of IAT and instead 
patch the code section directly replacing the calls to the 
imported functions by the calls to their own one particular 
functionwhich serves as the universal redirector.The 
redirector routine is same for all imported functions – it 
determines the correct original function address based on 
the return address placed on the stack. It is always heavily 
obfuscated and might contain occasional anti-debug checks.
Recovering the redirected imports is the challenging job 
and very time-consuming even for the skilled reversers.

Patch prevention. Patching refers to the process of 

modifying the compiled binary modules, in order to alter the 
behavior of its execution. Modules can be patched statically 
by permanently modifying them on disk, or dynamically 
– by modifying them in memory at runtime. Unprotected 
executable modules, in a form they were produced by 
the compiler (more precisely by the linker), are easily 
patchable: desired modifications can be usually made by 
directly patching appropriate bytes in code section, while 
addition of whole new executable sections to the PE binary 
is also possible for some complex patching scenarios.

However, there exist several methods to complicate the 
patching process. Even simple executable compression, 
used by almost every packer, including those not specifically 
designed for anti-reverse-engineering protection, makes 
direct static (on-disk) patching impossible. Original PE 
sections are no longer available in packed executables, 
so there is nothing to patch in a file on disk. Attacker can 
still patch such modules dynamically in-memory (either 
by another application, or by embedding the dynamic 
patching logic into the file itself - technique known as 
inline patching), or by unpacking the packed modules into 
the original form to enable direct patching. None of these 
are quite trivial to accomplish, though.

While not the only defense against patching, primary 
anti-patching measure employed by protectors is the 
verification of control sums (checksums) of important 
fragments of the binary module at runtime. This technique, 
also referred to as CRC checks, allows detection of even a 
single-bit modification of the binary (or some of its regions), 
and can be applied to detect both on-disk and in-memory 
patching attempts. In its simplest implementation, CRC 
check implies calculation of some kind of checksum (by any 
cryptographic hash algorithm) of the compiled binary (or 
some of its fragments, like code section, for example), saving 
of this checksum along with (usually inside) the binary, and 
verification of it at the desired moment at runtime (e.g. during 
module initialization). Digitally signing the module, and 
verifying this signature at runtime, is one realization of this 
concept. In more complex implementations, precalculated 
checksums can be used as a key in a symmetric encryption 
process of some kind. For example, protectors could 
encrypt the code representing the next layer of unpacking 
routine with a checksum of the previous layer. That way, 
any modification of previous layer (and for example, even 
placing the software breakpoint inside such code section 
during debugging session results in a modification of that 
section in memory, as outlined earlier in this paper) would 
make decryption of the next layer impossible.

Protectors incorporate CRC checks to thwart the inline 
patching, dynamic patching, and unpacking attempts. 
Attacking the CRC checks usually involves either 
falsification of stored checksum by overwriting it with 
desired value, or patching the checksum verification routine 
itself. Concealing and complicating the CRC verification 
process is a major concern of protector authors.

Even stronger patch prevention mechanism, although 
significantly complex in its implementation and with some 
notable limitations, is the code virtualization technique, 
which will be discussed shortly.

Code obfuscation. In order to analyze compiled 
binary, reverse engineer has to read through the thousands 
of lines of the disassembly presented in a low-level 
assembly language, often heavily optimized by the 
compiler for the target execution environment. While 
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quite challenging task as it is, comprehension of execution 
logic of the compiled code can be further complicated 
by obfuscation techniques. Any program code can be 
theoretically rewritten practically unlimited number of 
times into different physical representations, yet retaining 
the original execution logic. Code obfuscation implies 
rewriting original code fragments into new representation 
with different instructions, replacing simple constructs with 
more complex, but logically equivalent code, retaining the 
original code meaning. For example, simple arithmetic 
operation, involving only a couple of elementary assembly 
instructions, can be rewritten into tens or even hundreds of 
elementary instructions, performing complex calculations, 
yet producing the same result.

Along with complicating the execution logic, number 
of neutral code constructs can be inserted randomly, which 
alter the execution state in numerous ways, but then revert 
the changes back to neutralize the effect, thus not changing 
the logical flow of execution at all. In addition to such 
“garbage instructions”, some amount of random “garbage 
bytes” can also be inserted throughout the code in the 
places unreachable by normal execution flow. Such bytes 
will always be skipped by unconditional branching, or 
conditional branching instructions which will be executed 
when branching condition is always true – always skipping 
these bytes. If executed, such bytes would certainly make 
up the invalid instruction, resulting in a critical execution 
fault, but they will never be executed by the processor at 
runtime. On the other hand, disassemblers – especially 
those operating with linear weep method – interpret 
such bytes as parts of legitimate instructions. As a result, 
instruction parsing proceeds in a totally wrong direction, 
thus producing completely different assembly listing, 
compared to what will actually be executed.

Slightly decreased execution performance of obfuscated 
code, caused by increased complexity of execution, is often 
neglected, considering benefits the code obfuscation offers 
in a battle against reverse engineering.

While making the reverse engineering process much 
more time-consuming, deobfuscation – performing the 
reverse transformation of the code – is always possible to 
some degree. Many obfuscation techniques can be analyzed 
to the extent that even makes the creation of automated 
deobfuscation tools a real possibility. Nevertheless, code 
obfuscation remains to be one of the core concepts in 
reverse engineering field.

Code virtualization. One of the most powerful anti-
reverse-engineering techniques employed by modern 
software protection systems is code virtualization: during 
binary packing the protectors translate chunks of original 
code into custom meta-language, which is then interpreted 
at runtime by appropriate virtual machine – pure software 
execution environment, which is part of the protector and 
thus – embedded into the binary itself. The concept is 
similar to that of bytecode-based programming frameworks 
like Java and .NET. But unlike to them, instruction set is 
not documented publicly, and virtual machine is heavily 
obfuscated and armed with numerous anti-analysis tricks, 
to complicate the reverse translation process. Not only does 
this make analysis (not to mention patching) of such code 
fragments orders of magnitude harder, but also chains the 
whole binary to its virtual machine (and hence – to the 
protector) as the module can’t function without it, thus 
making unpacking impossible.

In more advanced protection systems, opcodes for every 

virtual instruction of the same virtual machine family are 
usually generated specifically for each particular binary that 
is being protected. As a result, opcodes are different in every 
protected binary and even if some opcodes were deciphered 
based on analysis of one such module, it would not be possible 
to identify same instructions by the same opcodes in another 
protected binary. One-to-one relation between virtual and 
real instructions is not a necessity: one virtual opcode might 
represent multiple assembly instructions, or, more frequently 
– one assembly instruction might be translated into several, 
more primitive virtual instructions.

Decompilation of the virtualized code requires in-
depth analysis of the corresponding virtual machine, and 
this is one of the most challenging tasks in modern reverse 
engineering world. Once the virtual machine has been 
studied well enough, the mapping between virtual opcodes 
and the original instructions can be established, and the 
decompilation of such code would then be possible.

Due to the performance hit of the virtual machine and the 
code interpretation process, authors usually choose to limit the 
virtualization to the critically important fragments of the code.

David Nachkebia
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Summary

Reverse Code Engineering (RCE) is a process of 
analyzing software system, usually in a compiled state – 
without corresponding source code, in order to decipher 
its modus operandi and optionally – to even modify its 
behavior. While multiple use cases exist, more often than 
not RCE is utilized against the will of the authors of target 
software product. It is the primary discipline responsible 
for the analysis and prevention of malicious software on 
the one hand, and for tampering of proprietary software 
licensing schemas – on the other.Hence these two, quite 
unrelated group of software engineers – malware authors 
and proprietary software developers are the main victims of 
reverse engineering. As a result, a number of sophisticated 
protection techniques have been developed to prevent, or 
at least slow down the process of reverse engineering and 
unauthorized tampering of compiled binaries, and these 
anti-RCE countermeasures bring the challenge of reverse 
code engineering to the next level.

The article presents the analysis of anti-RCE software 
protection systems on Windows platform. It discusses their 
implementation details and various techniques employed 
for protecting compiled executable binaries from reverse 
code engineering. The essence of executable packers and 
their principles of operation are analyzed; various anti-
debug, anti-dump, patch prevention, code obfuscation, 
and other complex anti-reverse-engineering techniques are 
uncovered.


