ANALYSIS OF WINDOWS PORTABLE EXECUTABLE SOFTWARE
PROTECTION SYSTEMS

ExeEcuTABLE PACKERS. Reverse engineering compiled
binaries is itself a challenge. In the process that we can call
“forward engineering”’, compiler generates the code that is not
intended to be explored and comprehended (not to mention
— modified) by the human being.Diversity of software and
hardware platforms and corresponding compilers results in
variety of binary formats and respective runtime execution
environments;hence the reverse engineering process differs
significantly for multitude of computing systems. Even for
same targeted platforms different compilers produce binary
compatible, yet slightly (and sometimes significantly) different
code. Butas long as the architecture of the compilation platform
(binary format and instruction set) is openly documented,
exploring the fragment of compiled code for the most part boils
down to reading the disassembled listing of programming code
in the corresponding low-level language (which would be x86
assembly language for natively compiled executable modules
and CIL for Microsoft .NET managed binaries, for example).
In Microsoft Windows family of operating systems, Portable
Executable (PE) is the universal file format for executable
binaries (primarily EXE and DLL files).

While analyzing disassembly is far more complicated
task than reading human-written source code of the same
low-level language, it is still an affordable affair for the
motivated researcher. In the process of reverse engineering
compiler-produced executable modules, analystis presented
to the number of natural obstacles (caused by the very fact
that compiled binaries are targeted to efficient execution
in corresponding software and/or hardware environments,
rather than to being explored for logical re-analysis), but
there are no artificial barriers specifically designed to hinder
the process. Compiler authors are not motivated, obviously,
to artificially impede the subsequent reverse engineering
attempts. For this reason, such binaries are practically
unprotected against reverse engineering endeavors.

But some developers have a need to make their compiled
binaries (and sometimes the associated supplementary data
files) as resistant to reverse engineering as possible. Mostly
there are two categories of people that are interested in this:
First are shareware software authors, who are concerned
about software piracy — reverse code engineering is the
primary discipline responsible for breaking legitimate
licensing schemas which enables mislicensing, unauthorized
reproduction and illegal distribution of software; The other
group of people interested in protecting their code from
being analyzed are malware authors — reverse engineering
viral code modules is the key measure in fighting against
malware. As a result, whole lot of anti-reverse-engineering
techniques have been developed over time to prevent, or at
least slow down, the analysis and/or modification attempts
on executable modules. Dedicated software protection
systems have been implemented, usually realized in the
form of executable module packers.

The essence of executable packers. The executable
packer is a software system used to compress, and in case
of protectors — also protect (via payload encryption and
various anti-reverse-engineering techniques), the compiled

Il

108

David Nachkebia

binary files. They originated to minimize executable file
size in an effort to reduce associated disk space and network
bandwidth usage. Packers can be divided into two major
categories: the ones designed for executable compression
only, and the ones that focus on executable protection
from reverse code engineering, incorporating variety of
appropriate techniques in addition to compressing the
binary module. While no strict definitions exist, the latter
are commonly called protectors, and former are referred
to as compressors, or more often — just packers. To
avoid ambiguity, packer will be used as the general term
throughout this paper, while compression-only packers
will be referred to as compressors.

The packer generates new executable from the supplied
unprotected binary, which has little to no similarity to the
original. It grabs the original PE module and compresses
(and optionally encrypts) its sections into an archive that is
added to the newly generated PE file as a data section. Some
sections, like resources, might be opted to be left untouched,
e.g. to make them statically accessible from the binary file
to external applications. Then the decompression stub is
placed in the code section, with a new entry point pointing
to it. When run, the decompression stub unpacks the sections
from the archive to their designated memory locations
(as specified in the original PE header) and takes all the
necessary actions (like resolving imports, handling module
relocation, etc.) to ready the original code for execution, and
then passes the control to the entry point of the original (now
decompressed) application. This entry point of the original
executable, where the control flow is firstly transferred from
packer’s code to the source application, is called Original
Entry Point — OEP, and plays a very important role in the
reverse engineering process of the packed executable.
Packed application’s import table is also different from the
original, and usually smaller — only consisting of imports
required to unpacking stub. Application’s original imports
are reconstructed (though often not in the original shape) and
resolved after unpacking and before reaching the OEP.

One resulted effect of even simplest executable
compression is the complication of the reverse engineering
process: packed binary files no longer contain original
executable sections in their natural form, so the static analysis,
as well as direct module patching, becomes practically
impossible and dynamic analysis is complicated significantly.
While compressor’s job is relatively straightforward and
merely resembles the steps pointed out above, protectors
take the process much further by implementing numerous
anti-reverse-engineering  techniques to hamper the
analysis and modification attempts even more.To impede
the comprehension of unpacking logic, the protector’s
unpacking code is usually self-decrypting and layered — each
chunk is decrypted dynamically right before its execution,
also erasing the old chunks of code. The original executable
payload can also be encrypted multiple times and decryption/
decompression spanned to several stages. While encryption
key is embedded into the packed payload, this theoretical
attack vector is not chosen typically by reverse engineers




0680M®3560IR0_I3d6MMM303s0 50863L-06306I006330

(because decrypting logic is so complicated). Most of the
packer’s code is heavily obfuscated and armed with numerous
anti-debug tricks, to ward off attackers before reaching OEP.
After decompression and decryption of original executable in
memory, the packer applies relocation fix-ups if required and
resolves imports, constructing the required Import Address
Table (IAT) replacement. Finally, the execution jumps to
the original entry point of the application (saved during the
packing process).

Most of the stronger protectors ensure that the
application still maintains the dependency to the packer’s
body after OEP, e.g. to make dumping of application’s
sections harder. Code section of the original binary is
usually modified during the packing process, applying code
obfuscation, virtualization, import redirection, and other
anti-analysis and anti-modification techniques, to ensure
protection after passing control to the original application.
Also, many software protection system vendors offer
SDKs which enable software developers to integrate
protector code at the source level, enabling applications
to utilize packer’s (heavily protected) code for various
security-related functionality: from debugger detection
checks to generating hardware IDs for licensing routines,
for example. Most protectors also incorporate full-featured
software licensing solutions (usually accessible via SDKs),
embedded right into the packer’s code.

Protection techniques. Since the first executable
packer was released in public, circa 1998, the protection
technology has been developing constantly to meet the new
challenges. Today’s protection systems implement so many
different defensive measures beyond just packing the binary
modules, that the collective word “packer” might seem a
little underestimating, but that is just a general term used
throughout the reverse engineering community. In this section
I’ll try to review some of the commonly used approaches
against reverse code engineering, used by modern software
protection systems. While primarily focused on natively
compiled executable modules (produced by languages like
C\C++ and Delphi), many techniques will be relevant, or at
least conceptually compatible, to other software platforms
(like byte-code based frameworks, for instance) which store
compiled code of any type in PE binaries.

Packing consequences. As outlined above, even
simplest executable compression automatically provides
multiple benefits from the protector’s perspective:

Preventing static analysis — static disassemblers and
decompilers are completely ineffective with packed
binaries as the original sections are simply unavailable
until runtime; Preventing direct file patching — even if the
attacker manages to make necessary patching in memory,
saving changes directly to the binary file is impossible,
and even though “indirect” methods of patching (known
as inline patching) make it possible, this significantly
complicates the attacker’s task. Concealing OEP — there is
no standard way to determine when the execution reaches
OEP after unpacking, and this is a significant barrier for
reverse engineers; as to why — I’d like to elaborate on this
subject a little bit further:

Inalmostevery reverse engineering session, determining
the original entry point of application and trapping the
transition to it from the packer’s code is the key requirement.
There reason for this is twofold. Firstly, analyzing complex
applications are frequently started from the entry point,
otherwise comprehension of the whole picture could be
hard or even impossible. In some cases, mostly with a

Il

109

GUI applications or DLL binaries, this might not be the
necessity, but the ability to trace the execution from its very
beginning is usually a big help for the analysis. Secondly,
module dumping — which is the primary technique used for
unprotecting packed applications after they are decrypted
in memory, is possible at the OEP only, at least for the
natively compiled applications. The reason for this is that
after OEP the data section of file might be modified, which
makes dumping dangerous (as the resulted section(s) will
not be in original state anymore), plus the OEP should be
known to be correctly specified in the PE header of the
dump. As a side note: this usually is not the case with .NET
assemblies protected with general-purpose (i.e. not .NET-
specific) packers, where dumping is normally possible at
any time after program’s execution.

Debug prevention. Binary-level debugger is the main
weapon against packers in hands of reverse engineer. Hence
debugger detection and prevention at runtime is one of the
central objectives of any protector. Variety of techniques
exists to determine whether current process is being
debugged or not. In case of debugger detection, actions vary
from immediate process termination to concealed corruption
of important runtime data structures to digressthe application
from normal execution path, without reverser suspecting the
reason for program’s misbehavior. Many techniques are built
upon the undocumented features of the platformarchitecture,
so the implementations are often OS version specific.

Exploiting PEB fields. Process Environment Block
(PEB) is the semi-documented runtime data structure
available in every process, representing some of the process’
important properties. Designed to be used by the application-
mode code in the operating system libraries for internal
needs, couple of its fields contain different values when the
process is being debugged, and this can be exploited for
debugger detection. While dedicated Win32 API exists for
this purpose, namely kernel32.IsDebuggerPresent(), which
determines debugger presence based on one of the fields of
PEB, it is more common for the protectors to read values
directly from PEB structure, because that API is well-known
and easily patchable for most reverse engineers.

Inspecting process’ heaps. When the application is
being debugged, each heap of the process has certain flags
set in its header, which subsequently result in appending
special sequence of bytes to the end of each heap allocation—
technique designed for easy buffer overflow detection.
While the heap structure is officially undocumented, it has
been researched by reverse engineers for various purposes.
The protector can check for these flags or directly for the
special signature of bytes, in any of the process’ heaps to
determine if the process was created in the debug mode.
The main heap of the process (pointed to by the PEB.
ProcessHeap field) is the common target of exploitation,
but the other heaps can be inspected as well.

Utilizing undocumented low-level APIs. At the
lowest level of Win32 API, in ntdll.dll module,
there are couple of functions that, when called with
appropriate (mostly undocumented) arguments, provide
interesting information about debug session, if present.
ZwQueryInformationProcess() and ZwQueryObject() are
such API functions, that indirectly, though reliably, can be
used to trap the presence of active debugger.

Checking for debug privileges.Debuggers need to
acquire SeDebugPrivilegeright to debug another application.
The ordinary applications usually do not have this privilege
present in the access token of the process, but when the




3086J:-06306360630, Ne4. 2012

process is created by the debugger it usually inherits this
privilege, and this provides another possibility to determine
debugger’s presence. Protectors can check for this privilege,
usually indirectly — attempting to execute actions that could
only succeed with debug privileges. One common way is to
try opening csrss.exe system process — an attempt that should
fail from non-debugged applications. It is even possible to
cause BSOD when SeDebugPrivilegeis available. Indirect
ways of testing for the presence of debug privileges make
this method a powerful debugger detection trick.

Manipulating SEH mechanism.Structured Exception
Handling (SEH) is the native exception handling
mechanism for Windows. Variety of anti-debug techniques
employ on it, because of its special characteristics related
to debugging. When the exception is generated, it is firstly
passed to the debugger — if such is attached to the process.
The debugger can then either consume it, or ignore — pass it
to the application’s event handler. The protector can install
its own exception handler and then deliberately generate
some exception, e.g. via dereferencing invalid pointer,
dividing by zero, or even using kernel32.RaiseException()
(or lower-level ntdll.RtIRaiseException()) system API. If
the debugger will “swallow” (i.e. not pass to the application)
the exception (and this is usually the default behavior),
protection code will deduce debugger’s presence.

In such cases, when the application expects to receive
these exceptions, the debugger can be configured to pass
all or specific exceptions to the program, but protectors
have more tricks to circumvent this. The frequently used
API kernel32.CloseHandle() (more precisely the lower-
level ntdll.ZwClose() function it is based onto) will throw
EXCEPTION _INVALID HANDLE (0xC0000008) exc-
eption when passed an invalid handle value, but only when
the debugger is attached. The protector can monitor for
this behavior by deliberately passing the invalid handle to
the function. In such case, in order to avoid detection, the
attacker should not pass the exception to the program.

Another interesting method is generating DBG
PRINTEXCEPTION_C exception, which — as opposed to
most of other exceptions — is unconditionally consumed
by many debuggers, because it represents the means of
passing the diagnostic textual messages to the debugger
(functionality wrapped by kernel32.OutputDebugStringW()
and similar APIs) and hence is not expected to be of any
use for the application code itself.

One more interesting anti-debug trick is installing
the last-resort exception handler via kernel32.
SetUnhandledExceptionFilter()system API. Whilenormally
catching unhandled exceptions (purposely generated by
the protector) when the application is not being debugged,
when the debugger is attached to the process such handler
will not be called, even when explicitly instructing the
debugger to pass exception to the program.

Structured Exception Handling mechanism can also be used
to manipulate the execution flow of the application, complicating
the analysis process for the reverse engineer. Variations
of discussed techniques can be combined to significantly
complicate the debugging session for the attacker.

Breakpoint detection. Software breakpoints are usually
realized in form of the one-byte INT3instruction (opcode
0xCC), which causes the processor interrupt that is handled
by the debugger. When placing such breakpoint, first byte
of the target instruction is overwritten with 0xCC byte,
and when it gets hit the debugger restores original byte to
continue execution. Memory CRC checks can be effectively

Il

110

used to detect software breakpoints, because code has to be
modified when placing them. First bytes of known internal
or imported functions, as well as small critically important
code fragments, can be checked directly for the value of
this opcode. Checking the return address of current function
for this value is a very effective anti-tracing technique, as
the debugger usually places such breakpoint after target
function when performing the “step-over” functionality.

When software breakpoints are being detected, attacker
might opt to use hardware breakpoints instead. They are
implemented by means of special debug registers of CPU,
where up to four memory addresses can be stored to be
monitored not only for code execution, but for read or write
memory access as well. Detecting hardware breakpoints
is possible by inspecting the appropriate debug registers.
This can be accomplished by retrieving the CONTEXT
structure of current thread, either by explicitly calling
the ntdll.ZwGetContextThread() API with CONTEXT
DEBUG_REGISTERSflag, or by artificially generating any
exception and receiving pointer to the CONTEXT structure
as indirect argument in the associated exception handler.

Alternatively, instead of detecting breakpoints,
protector can try to blindly erase themperiodically, without
even checking whether they exist. In case of software
breakpoints, this is possible by overwriting important code
fragments, desirably whole code section, from the file
on disk. This will make all software breakpoints in that
fragment disappear. With hardware breakpoints, the debug
registers can be nullified to achieve the same results.

Execution timing. When the debugger intervenes in
the program’s execution, for example when processing
breakpoints or generated exceptions, the execution is usually
slowed down significantly. The protector can measure
the amount of time spent for the execution of important
code fragments, and deduce if the process was suspended
meanwhile — presumably by the debugger. RDTSC assembly
instruction can be used for such purposes, which returns
internal CPU timestamp counter stored in one of its MSR
registers. Alternatively, kernel32.GetTickCount() API can
be used to get the system’s uptime counter, or it can even be
read directly from the specific user-mode memory location
where it is constantly updated by the operating system’s
kernel code. When carefully concealed by code obfuscation
techniques, execution time monitoring can become very
effective debugger prevention measure.

Hiding the thread from debugger.The ntdll.
ZwSetInformationThread function is officially documented
as a routine that can be used to change the priority
of a thread. But when it receives the undocumented
HideThreadFromDebugger (0x11) info-class value as
an argument, it sets the appropriate flag in the thread’s
ETHREAD kernel structure, causing all debug events
associated to that thread to be discarded without passing
them to the attached debugger. This means that the
debugger will no longer be notified about breakpoints
hit, or generated exceptions, for example. In case of the
application’s main thread, it won’t even receive the process
termination notification. This will effectively render the
debugger useless for the most part.

Avoiding debugger attach. Sometimes, especially
when the unpacking code of the protector is hard for the
reverser to trace and finding OEP is not required,it might
be preferred to attach the debugger to thealready running
process, instead of starting the application under the
debugger. When this happens, the operating system creates




0680M®3560IR0_I3d6MMM303s0 50863L-06306I006330

a new thread in the target process, with an entry point at
ntdll.DbgUiRemoteBreakin() routine which calls ntdll.
DbgBreakPoint() function consisting of only one instruction
— the INT3 software breakpoint. When this breakpoint is
triggered, the first notification is sent to the debugger, the
newly created thread terminates and the attach procedure
is complete. In order to avoid attaching the debugger, the
protector can patch either the DbgUiRemoteBreakin() or
the DbgBreakPoint() function, and redirect to the kernel32.
ExitProcess() API for example. In such scenario the
application process will terminate as soon as any debugger
will attempt attaching to it.

Self-debugging. The application can spawn a copy of
itself as a new processand attach to it as a debugger. The
real application logic will be executed in the child process.
As there can’t be more than one debugger attached to any
process at the same time, the attacker will not be able to
attach its own debugger to the child. Terminating the parent
process will result in termination of the child process.
This technique is not too hard to circumvent in its trivial
implementation, by injecting the code in debugger process
and detaching it from there, but some realty powerful
protection mechanisms can be built onthis concept. One
such example is the “Nanomites” technology from the
Armadillo software protection system. When protecting,
it replaces the conditional jumps in original application’s
code section with INT3 software breakpoints, and then
uses debugging at runtime to control the child process.
When such breakpoint is hit, the parent process that acts
as a debugger determines the destination of the conditional
jump and the exact type of branching instruction (from its
heavily encrypted tables), and whether it should be taken or
not (based on the value of the flags CPU register) and then,
modifying the instruction pointer, resumes the execution
flow accordingly. In this case it is not easy to detach the
parent (debugger) process, as the child process simply
cannot function without it.

Targeting specific debuggers.The number of popular
debuggers most frequently utilized by the professional
reverse engineers can be counted on the fingers of one
hand. Nowadays just two of them are used in vast majority
of the reverse engineering sessions. While most of the anti-
debug techniques are more or less universal, in a sense
that they can be equally successfully used for detection of
any application debugger, some methods can be uniquely
designed to target the specific one. This might be the bug
exploited in the specific debugger, or the global operating
system objects created by it, for example. One trivial
(but by no means ineffective) method is enumerating and
inspecting the window names in the system, in a search for
a predefined text, characteristic to the specific debugger.

Dump prevention. Tounprotectthe packed applications,
in many cases it is necessary to “unpack” them, i.e. to
recover the application in its original form — removing the
protector’s cover, in order to ease the analysis process and/
or make the permanent binary patching possible. The key
to this job is the process dumping — grabbing the image
of the process from the memory after its original sections
have been fully decrypted there. Usually the dumping is
only possible when the execution is paused at the OEP, for
the reasons already explained previously. If the protectors
did not retain any dependencies to the application after
unpacking it (just as compressor packers work), it would
be easy to unprotect them just by dumping the module’s
sections from the memory after reaching the OEP. But

Il

it

today’s protectors employ variety of techniques to prevent or
at least complicate this process. Anti-dumping mechanisms
are built into every strong protection system.

Damaging the PE header.PE header is the crucial part
of any PE module and describes the binary’s contents
and characteristics in detail. It is mostly utilized during
the module loading phase, when the operating system’s
loader reads various parameters from it, and is rarely
referred to afterwards. For successful dumping various
fields of the header are read by the dumper programs, and
they can be damaged by the protector to prevent dumping.
Some of these fields are completely ignored by the OS
loader (they serve the diagnostic purposes only), but not
ignored by many debuggers and process dumpers, which
means that such binary can be loaded and run successfully
by the operating system, while unexpected errors might
occur when trying to dump or even debug them. The
even more radical approach would be erasing the whole
header, especially the section table, after the module has
been loaded, to neutralize many dumpers that rely on it,
but this method isless frequently used by the protectors, as
some APIs will still need to reference it at runtime, e.g. for
loading resources from the module.

Damaging the SizeOflmage parameter of the
module. The Ldr field of the PEB structure points to the
PEB LDR DATA structure that contains the list of all
modules present in the process and their parameters. Its
InLoadOrderModuleList member contains the list of
loaded modules, sorted by the time of their loading. Each
of the modules is described by LDR MODULE structure,
SizeOflmage field of which represents the size of the
module in memory. It is set by the OS loader from one
of the fields of the PE header when the module is loaded.
Many dumpers rely on this value to determine the region of
memory that belongs to the specific module, and damaging
it by specifying some enormously large bogus number
would most probably render them unusable.

On-demand code decryption. Most of the packers fully
decrypt the whole application before passing control to the
OEP, and this is the major weakness of the whole concept
of an executable packing in general. But there exist some
implementations where this is not really a case. It is possible
to dynamically decrypt only those parts of the program that
need to be executed or accessed next, and then preferably
erase them later — without exposing the whole picture of the
application’s sectionsto the attacker at any given moment
of time. Each section of the executable binary is usually
one atomic structure, not quite divisible by any standard
means, so there aren’t many ways of implementing this
concept. Generic method that can be used to protect any
binary with this technique is based on the memory guard
page mechanism of Windows. A guard page provides a
one-shot alarm for memory page access — memory region
can be marked as guard pages, and any attempt to access
them will cause the system to raise a STATUS GUARD _
PAGE_ VIOLATION (0x80000001) exception (turning off
the guard page status at the same time). The protector can
intercept this exception, check the destination address, and
if it falls in the specific range, decrypt the appropriate part
of the protected section. To make dumping and analysis
even harder, it is possible to erase old pages, e.g. when new
pages will be triggered, but the performance penalty will
thenbe an issue in many cases.

Code stealing.Each PE module consists of the PE
header and multiple sections. When dumping the module




3086J:-06306360630, Ne4. 2012

from memory, usually only the sections which make up the
module are grabbed, not any other memory allocations of
the process. The protector can steal the chunks of the code
from the code section, and place them in the memory buffer
(with page execute access) allocated dynamically. There
will be jumps placed to and from those stolen code buffers
connecting them to the code section, so the application’s
execution will not be affected by such modifications. The
place of stolen bytes in the code section will be filled with
garbage, and the relocated code will be usually obfuscated
and interleaved with garbage instructions, to complicate
the restoration of the code in its original location. As a
result, when the attacker will dump the module, the code
section will contain “holes” in place of stolen code chunks,
consisting of jumps to the nonexistent memory allocations.
The stolen code can be not only obfuscated, but sometimes
virtualized or interleaved with anti-debug checks, creating the
dependencies to the protector’s code section. This techniqueis
employed by many advanced protections systems and makes
dumping extremely difficult for reverse engineers.
Manipulating imports mechanism. Practically all PE
modules import number of functions from some dynamic
link libraries (DLLs). This is accomplished by the well-
defined imports mechanism. When loading the executable
binary, Windows’s image loader parses the import table
and resolves imports by loading referenced libraries and
constructing Import Address Table (IAT) — an array of
pointers containing the virtual addresses of the imported
functions. All invocations of the imported functions in the
code are made through these pointers. In order to complicate
the damping process, the protector can eliminate the
import table and save the names of referenced DLLs and
corresponding imported functions in its own, obfuscated
format. During unpacking, before transferring control
to the OEP, it will determine and resolve all the imports,
constructing the IAT in a similar manner like the operating
system’s image loader does. By strippingthe original import
table, the module’s dump will not be possible to be loaded
by the OS’s image loader, as it will not have the information
necessary for building the IAT. The attacker can recover
this information by scanning the IAT after it has been built
by the protector and determining the names (or ordinals)
of the functions (and their exporting modules) pointed
to by the entries of the IAT. In order to avoid this, some
protectors employ the import redirection — in the allocated
buffers they place obfuscated trampoline routines, which
do nothing but call one of the imported functions. Then
they place the addresses of these redirection routines in the
IAT, instead of original function addresses. In this manner,
original function names can’t be automatically determined
by just scanning the IAT — the attacker will have to analyze
each and every such entry of the IAT to deduce to which
function of which module they are actually redirected. To
complicate the import reconstruction even more, some
protectors completely eliminate the use of IAT and instead
patch the code section directly replacing the calls to the
imported functions by the calls to their own one particular
functionwhich serves as the universal redirector.The
redirector routine is same for all imported functions — it
determines the correct original function address based on
the return address placed on the stack. It is always heavily
obfuscated and might contain occasional anti-debug checks.
Recovering the redirected imports is the challenging job
and very time-consuming even for the skilled reversers.
Patch prevention. Patching refers to the process of

Il

112

modifying the compiled binary modules, in order to alter the
behavior of its execution. Modules can be patched statically
by permanently modifying them on disk, or dynamically
— by modifying them in memory at runtime. Unprotected
executable modules, in a form they were produced by
the compiler (more precisely by the linker), are easily
patchable: desired modifications can be usually made by
directly patching appropriate bytes in code section, while
addition of whole new executable sections to the PE binary
is also possible for some complex patching scenarios.

However, there exist several methods to complicate the
patching process. Even simple executable compression,
used by almost every packer, including those not specifically
designed for anti-reverse-engineering protection, makes
direct static (on-disk) patching impossible. Original PE
sections are no longer available in packed executables,
so there is nothing to patch in a file on disk. Attacker can
still patch such modules dynamically in-memory (either
by another application, or by embedding the dynamic
patching logic into the file itself - technique known as
inline patching), or by unpacking the packed modules into
the original form to enable direct patching. None of these
are quite trivial to accomplish, though.

While not the only defense against patching, primary
anti-patching measure employed by protectors is the
verification of control sums (checksums) of important
fragments of the binary module at runtime. This technique,
also referred to as CRC checks, allows detection of even a
single-bit modification of the binary (or some of its regions),
and can be applied to detect both on-disk and in-memory
patching attempts. In its simplest implementation, CRC
check implies calculation of some kind of checksum (by any
cryptographic hash algorithm) of the compiled binary (or
some of its fragments, like code section, for example), saving
of this checksum along with (usually inside) the binary, and
verification of it at the desired moment at runtime (e.g. during
module initialization). Digitally signing the module, and
verifying this signature at runtime, is one realization of this
concept. In more complex implementations, precalculated
checksums can be used as a key in a symmetric encryption
process of some kind. For example, protectors could
encrypt the code representing the next layer of unpacking
routine with a checksum of the previous layer. That way,
any modification of previous layer (and for example, even
placing the software breakpoint inside such code section
during debugging session results in a modification of that
section in memory, as outlined earlier in this paper) would
make decryption of the next layer impossible.

Protectors incorporate CRC checks to thwart the inline
patching, dynamic patching, and unpacking attempts.
Attacking the CRC checks usually involves either
falsification of stored checksum by overwriting it with
desired value, or patching the checksum verification routine
itself. Concealing and complicating the CRC verification
process is a major concern of protector authors.

Even stronger patch prevention mechanism, although
significantly complex in its implementation and with some
notable limitations, is the code virtualization technique,
which will be discussed shortly.

Code obfuscation. In order to analyze compiled
binary, reverse engineer has to read through the thousands
of lines of the disassembly presented in a low-level
assembly language, often heavily optimized by the
compiler for the target execution environment. While




0680M®3560IR0_I3d6MMM303s0 50863L-06306I006330

quite challenging task as it is, comprehension of execution
logic of the compiled code can be further complicated
by obfuscation techniques. Any program code can be
theoretically rewritten practically unlimited number of
times into different physical representations, yet retaining
the original execution logic. Code obfuscation implies
rewriting original code fragments into new representation
with different instructions, replacing simple constructs with
more complex, but logically equivalent code, retaining the
original code meaning. For example, simple arithmetic
operation, involving only a couple of elementary assembly
instructions, can be rewritten into tens or even hundreds of
elementary instructions, performing complex calculations,
yet producing the same result.

Along with complicating the execution logic, number
of neutral code constructs can be inserted randomly, which
alter the execution state in numerous ways, but then revert
the changes back to neutralize the effect, thus not changing
the logical flow of execution at all. In addition to such
“garbage instructions”, some amount of random “garbage
bytes” can also be inserted throughout the code in the
places unreachable by normal execution flow. Such bytes
will always be skipped by unconditional branching, or
conditional branching instructions which will be executed
when branching condition is always true — always skipping
these bytes. If executed, such bytes would certainly make
up the invalid instruction, resulting in a critical execution
fault, but they will never be executed by the processor at
runtime. On the other hand, disassemblers — especially
those operating with linear weep method — interpret
such bytes as parts of legitimate instructions. As a result,
instruction parsing proceeds in a totally wrong direction,
thus producing completely different assembly listing,
compared to what will actually be executed.

Slightly decreased execution performance of obfuscated
code, caused by increased complexity of execution, is often
neglected, considering benefits the code obfuscation offers
in a battle against reverse engineering.

While making the reverse engineering process much
more time-consuming, deobfuscation — performing the
reverse transformation of the code — is always possible to
some degree. Many obfuscation techniques can be analyzed
to the extent that even makes the creation of automated
deobfuscation tools a real possibility. Nevertheless, code
obfuscation remains to be one of the core concepts in
reverse engineering field.

Code virtualization. One of the most powerful anti-
reverse-engineering techniques employed by modern
software protection systems is code virtualization: during
binary packing the protectors translate chunks of original
code into custom meta-language, which is then interpreted
at runtime by appropriate virtual machine — pure software
execution environment, which is part of the protector and
thus — embedded into the binary itself. The concept is
similar to that of bytecode-based programming frameworks
like Java and .NET. But unlike to them, instruction set is
not documented publicly, and virtual machine is heavily
obfuscated and armed with numerous anti-analysis tricks,
to complicate the reverse translation process. Not only does
this make analysis (not to mention patching) of such code
fragments orders of magnitude harder, but also chains the
whole binary to its virtual machine (and hence — to the
protector) as the module can’t function without it, thus
making unpacking impossible.

In more advanced protection systems, opcodes for every

Il

113

virtual instruction of the same virtual machine family are
usually generated specifically for each particular binary that
is being protected. As a result, opcodes are different in every
protected binary and even if some opcodes were deciphered
based on analysis of one such module, it would not be possible
to identify same instructions by the same opcodes in another
protected binary. One-to-one relation between virtual and
real instructions is not a necessity: one virtual opcode might
represent multiple assembly instructions, or, more frequently
— one assembly instruction might be translated into several,
more primitive virtual instructions.

Decompilation of the virtualized code requires in-
depth analysis of the corresponding virtual machine, and
this is one of the most challenging tasks in modern reverse
engineering world. Once the virtual machine has been
studied well enough, the mapping between virtual opcodes
and the original instructions can be established, and the
decompilation of such code would then be possible.

Due to the performance hit of the virtual machine and the
code interpretation process, authors usually choose to limit the
virtualization to the critically important fragments of the code.

David Nachkebia

ANALYSIS OF WINDOWS PORTABLE
EXECUTABLE SOFTWARE PROTECTION
SYSTEMS

SUMMARY

Reverse Code Engineering (RCE) is a process of
analyzing software system, usually in a compiled state —
without corresponding source code, in order to decipher
its modus operandi and optionally — to even modify its
behavior. While multiple use cases exist, more often than
not RCE is utilized against the will of the authors of target
software product. It is the primary discipline responsible
for the analysis and prevention of malicious software on
the one hand, and for tampering of proprictary software
licensing schemas — on the other.Hence these two, quite
unrelated group of software engineers — malware authors
and proprietary software developers are the main victims of
reverse engineering. As a result, a number of sophisticated
protection techniques have been developed to prevent, or
at least slow down the process of reverse engineering and
unauthorized tampering of compiled binaries, and these
anti-RCE countermeasures bring the challenge of reverse
code engineering to the next level.

The article presents the analysis of anti-RCE software
protection systems on Windows platform. It discusses their
implementation details and various techniques employed
for protecting compiled executable binaries from reverse
code engineering. The essence of executable packers and
their principles of operation are analyzed; various anti-
debug, anti-dump, patch prevention, code obfuscation,
and other complex anti-reverse-engineering techniques are
uncovered.




