Prognosis of Hydro Power Plant Energy Indicator by Using the Least Squares Method

Salome Lomidze Doctoral Student, Maka Gudiashvili Associate Professor

რეზიუმე

ჰიდროსადგურის ენერგეტიკული ინდიკატორის პროგნოზირება უმცირეს კვადრატთა მეთოდის გამოყენებით

ნაშრომში სტატისტიკურ ინფორმაციაზე დაყრდნობით გამოთვლილია ხადორი ჰესის ძირითადი საშუალებების ფონდამოგების კოეფიციენტი 2009-2013 წლებისთვის. ჶფონდამოგების მაჩვენებლის 2014-2018 წლების პროგნოზისთვის გამოყენებულია უმცირეს კვადრატთა მეთოდი.საბოლოოდ, გამოვლენილია ტრენდის ხაზი და გრაფიკულად გამოსახულია პროგნოზული მაჩვენებლები.

საკვანძო სიტყვები: უმცირეს კვადრატთა მეთოდი, პროგნოზირება, ენერგეტიკული ინდიკატორები.

Summary

In this paper is calculated Khadiri HPP energy indicator called "Coefficient of Turnover Fixed Assets''based on statistical information during 2009 -2013 years. To determine Coefficient of Turnover fixed assets of Khadiri HPP in future 2014-2018 years, we use Least Squares Method. Finally is revealed trend line and graphically shown prognoses indicators.

Key Words: Least Squares Method, Prognosis, Energy Indicators.

* * * * * * * * *

Khadori HPP is a seasonally regulated hydro power plant and is located in Akhmeta region at the tributary of rivers Alazani and Samkhuristskhali. Khadori HPP was put into operation is 2004. It is in a private possession.

The installed capacity of the plant is 24 MW. Average annual capacity is 100 million kWh. Fixed assets are 5 mln GEL, retail price is set by Georgian National Energy and Water Regulatory Commission (GNERC) 0,875 GEL/kWh plus 20% Value Added Tax (VAT), sum would be 0,105 GEL/kWh. Production value in 2009 is (100 mln kWh*0,105GEL/kWh) 10,5 mln GEL. Production value during 2009-2013 is shown in table 1.

We calculated Coefficient of Turnover fixed assets=Production, GEL/Fixed Assets, GEL.

Table 1

14010 1.					
Years	2009	2010	2011	2012	2013
Production, mln GEL	10,5	24	13,8	40,8	34,6
Fixed assets, mln GEL	5	5,1	5,3	5,2	5,1
Coefficient of Turnover Fixed Assets	2	5	3	8	7

To determine Coefficient of Turnover fixed assets in future 2014-2018 years, we use Least Squares Method. The equation of least square line is:

Y=ax+b

Where (a) and (b) are the values.

We must calculate following steps:

Step1: Count the number of values: n.

Step 2: Find xy, x2.

Step 3: Find Σx , Σy , Σxy , Σx^2 .

Step 4: We use the least squares regression line equations to find the value of (a) and (b):

After that equation system has following image:

$$\begin{cases} \sum y = a \sum x + nb \\ \sum xy = a \sum x2 + b \sum (1) \end{cases}$$
 (1)

We can find trend line values:

$$\tilde{y}=ax+b$$
 (2)

Where

ỹ is trend line value;

x is data points;

(a) and (b) are the values.

Deviation from real (y) value

$$\sum (y - \tilde{y}) = 0 \qquad (3)$$

We mustfit a least square line to the following data from table 1. Also find trend values.

Table 2.

Year	2009	2010	2011	2012	2013
X	1	2	3	4	5
Y	2	5	3	8	7

I step: n=5

II step and III step are represented in table 3.

Table 3.

n	x	y	xy	x ²	ỹ=ax+b	y- ỹ
1	1	2	2	1	2.4	-0.4
2	2	5	10	4	3.7	1.3
3	3	3	9	9	5.0	-2
4	4	8	32	16	6.3	1.7
5	5	7	35	25	7.6	-0.6
5	∑15	∑25	∑88	∑55	Trend Value	$\sum_{\tilde{y}=0} (y-\tilde{y})=0$

IV Step: solve this equation system:

$$\begin{cases}
25 = 15a + 5b \\
88 = 55a + 15b
\end{cases}$$
(5)

Calculate (b) from (4)

$$b = \frac{25 - 15a}{5}$$
 (6)

Insert (b) in (5)

$$88=55a+15*\frac{25-15a}{5}$$

Divide 15 on 5:

88=55a+(3*25)-(3*15a)

88=55a+75-45a

88-75=55a-45a

13=10a

a = 13/10

a=1.3

Determined (a) insert in (6) and calculate (b):

$$b = \frac{25 - 15(1,3)}{5} = \frac{25 - 19,5}{5} = \frac{5,5}{5} = 1,1$$

$$a=1,3;$$
 $b=1,1$

The equation of least square line (Trend Value)has following image:

$$\tilde{y} = 1,3x+1,1(7)$$

For the trend values, put the value of (x) in equation (7): \tilde{y} 1=1,3(1)+1,1=2,4 and so on from table 3.

Deviation from real (y1) value in year 2009 will be:

y- \tilde{y} =2-2.4= -0,4

Table 4.

n	year	Trend Line Valueỹ=ax+b
6	2014	ỹ ₆ =1,3(6)+1,1=8,9
7	2015	$\tilde{y}_7 = 1,3(7)+1,1=10,2$
8	2016	$\tilde{y}_{8}=1,3(8)+1,1=11,5$
9	2017	$\tilde{y}_9 = 1,3(9)+1,1=12,8$
10	2018	$\tilde{y}_{10} = 1,3(10)+1,1=14,1$

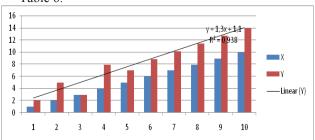

Solution with Excel: Insert>column>add trendline>correlation>OK.

Table 5.

We draw graph of prognoses coefficients during 2014-2018 years.

Table 6.

Finally is revealed trend line and graphically shown prognoses indicators of Khadori HPP in future 2014-2018 years.

Used Literature:

- 1. Gudiashvili M. Energy Economics. Textbook. Published by "Technical University", 2012. Page 154.
- 2. Steve Doty, Eayne C. Turner. Energy Management Handbook. page 847.
- 3. Albert Thumann, Eric A.Woodroof. Energy Project Financing Resources and Strategies for Success.

Page 462.