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Abstract

The paper investigates and analyses the technologies and the methods for optimization in a multi-product
environment, where the firms face more difficulties to make optimal decisions. It is shown that One-Product
Prices Optimization (OPPO) can’t be used for Multi-Product Prices Optimization (MPPO) problem, because
of both prices and demands, being random variables, may exhibit different covariate relationships,
determined by means of substitution and complimentarity effects. The system of covariate relationships,
determined by means of substitution and complimentarity processes, is represented as the system of
multivariance regression equations. MPPO problem have been reduced to the maximization problem of the
objective function of Total Revenue, which is a quadratic form. Seemingly unrelated regression models were
suggested as basic methodology of estimation of MPPO model. It was shown that: if the matrix of the
regressors of the model is identical for all of the regression equations (for all dependent variables), the
Generalized Least Squares (GLS) method is reduced to classical Least Squares (LS) method and one can
estimate regressions equations independently. Such estimations and all inferences made based on them are
correct. The represented theory can be used as a basis for development of a relevant software.

Keywords: Price Optimization, Single-Product Pricing, Multi-Product Pricing, Substitution,
Complementarity, Total Revenue, Generalized Least Squares, Multivariate Regression, Seemingly -unrelated
Regression models.

1. Introduction and the Problem Statement

Correct and timely estimation of economic, financial and managerial parameters of an enterprise, such as:
maximum of total revenue and profit, price and cross elasticity of demand, marginal revenues of the complex
of products under condition of cross-elasticity correlations is one of the most demanded problems in theory
and practice of economics and business.

In contrast to a single-product pricing models, multi-product pricing models have been significantly less
studied due to the complexity of multi-product demand functions (Soon, 2009, pp. 399-430). Many decision-
makers use incomplete demand functions which are defined only on a limited scale, e.g. the combination
where all elements of demand functions are non-negative. In real marketplace managers often make pricing
decisions for several products simultaneously. By doing so, decision makers can control for substitution
effects or benefit from potential synergies between the products (Goic, 2011).

Companies sell several products, and in addition to determining the quantity of orders should also
determine the selling price of each product sold, whereas the main component of determining the price - the
demand, for each product is of conditional nature and depends on the demand of other products.

Based on the defined problem in the previous paragraph, our objectives and research goals are to create
mathematical model and corresponding software that can be applied in particular pricing problems. The price
optimization methods for one product are well known, but they cannot be used in the multi-product case,
because of an effect of a cross-elasticity interaction among the products (Gallego, 2014, pp. 450-461) . The
latter leads to complicate mutual correlations among products’ prices and demands, and therefore requires
usage of alternative mathematical methods. Developing methods and corresponding algorithms for solution
of the defined problem allows, based on the accumulated statistical data of the prices and demands of the
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products, obtaining comprehensive analysis of economic, financial and managerial states of the enterprise.
Specifically, the results of the research allow estimating: maximum of total revenue and profit, price and
cross elasticity of demand, marginal revenues of the complex of products, break even points. It should be
mentioned that there is no Business Plan without the analysis of revenue, profit, break even points; therefore,
the research goal can be crucially important for easing the entire business processes.

2. Theoretical Foundations of Multi-Product Prices Optimization Models
2.1. One-Product Prices Optimization (OPPO) Problem

The OPPO problem is well known. It is based on the assumption that the dependence between Demand,
D, and Price, P follows straight line

D=a+kP, (1)
where k-slope, and, it has the same dimension as D, that is, number of units sold per unit of time;
a-intercept (a>0), again the same dimension as D, but let us note that it has no direct economic sense;
g-normally distributed random variable with zero mean.

One of the basic lows of economics reveals that k<0, so that the increasing of Price implies strictly
decreasing of Demand (Goldberger, 1991). It is clear, that this is an idealization of real economic processes
(Greene, 2000), but it is a direct consequence of the assumption (1), which also implies that Total Revenue
can be represented as

TR=aP+kP’. )
It is easy to obtain values of prices and demand which provide maximum of Total Revenue. To find
maximum of the function (2) one has to differentiate it:

AR 4 +2kP
dp

making it equal to zero gives simple equation
a+2kP=0,

which leads to optimal value of the price variable, that is to the price value which maximizes Total
revenue function.

a

Poy=r ®)
Substituting the later into (1) implies corresponding value of optimal Demand
Dop=%; 4)

The production of (3) and (4) defines the maximum value of the Total Revenue function

a2
TTrnax = e ®)

The next step is including the costs in the model.

The cost function can be represented by means of straight line equation

C=Crt+c/D, (6)
where Cg-fixed costs, and C, — variable costs.

Including of the costs requires inverting of (1)
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P=a;- kiD, (1)
where a;=a/k; k;=1/k.

Now the Total Revenue function can be expressed in terms of Demand,

TR=a;D+k,D’,

and one can use (6) to calculate Profit function and points D; and D,where Profit is equal to costs, that is
Break-even points.

Profit=TR-C= a;D-k;D*- C¢-c,D=0;
The latter is a simple quadratic equation (with respect to unknown D), which can be easily solved

—(cpy—aq)t (cy—aq1)2+4+Cpxk
Dly2 — 1 2k1 1 F 1. (7)

Also, it is easy to calculate parameters corresponding to (3)+(5)

a+cy.

Pocp =T, (39

aq—c, v

Dgp = —;klv; 4"
2_.2

Prmax = %. (5"
1

All of these parameters are extremely useful for implementation of efficient financial and economic
management in a retail business. Note, that they are strongly depended on correct and reliable estimation of
regression parameters a, k and € in (1).

2.2. Development of the Mathematical Model for the MPPO problem

Despite of the usefulness of the model, it cannot be applied when a manager faces Multi-Product Prices
Optimization (MPPO) problem. Beside that the latter Problem differs from OPPO problem with high
dimensions of the all functions represented above, it has another specific issue: both prices and demands may
exhibit different covariate relationships, determined by means of substitute and compliment processes. Such
kind of covariate relationships create a system of constraints which should be included in the relevant
mathematical model of the MPPO problem.

2.2.1. Determination of the model

The basic objects of the MPPO model are observed random variables: di (i=1, 2,...,m) - demand and p;
(i=1,2,...,m)-corresponding prices. We don’t consider question about their distributions. They constitute two
m-dimensional vectors d (d;....,dm ) and p(pi,..., pm ). We assume that there exist m relationships of type (1)
between their components

di=aitkiipi +ei (i=1, 2,...,m), ®)

where all parameters have the same sense as in (1). We call (8) paired models and their parameters -
paired parameters. Note that paired model is nothing but the set of m independent OPPO models.

Total Revenue function TRy, of the MPPO problem can be represented as an inner product of two m-
dimensional vectors d and p

TRM = (d' p)l (9)
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or, in coordinate form
TRy = XiL1d;p;. (10)

Drastic distinction between paired models and MPPO models is that each of the demand potentially can
be dependent on all/part of price variables

P =rd ++y,d, b+ g

................................................... , (11)
Pn=Vmd +ty,d +b +&,

Where p; — price of the item i;

d; - demand of the item i;

& - normally distributed random variable with zero mean corresponding to observations of item i.

Observe, that v; (i, j=1,2,...,m) now may have positive or negative signs, as demands can be in different
relations (substitute or compliment) with different prices.

(11) can be represented in more economic, matrix, format

p=Ip+b+eg (12)
where d and p - mx1 vectors of demand and prices;

b- mx1 vector of intercepts;

I' — m-order matrix, with entries y;jequal to coefficients in (11) and subject to identification.

e - random mx1 vector, contained normally distributed random variables with zero mean and
covariance matrix X, which completely defines statistical nature of the system of equations in (12),
and therefore their identification method. This question will be discussed latter in detail.

If the entries v;; of the matrix I have already being identified, then substituting of (12) into (10) implies
(after simple transformations)

TRy = p"Kp + (p, b), (13)
Yij ifi=j
where K — simmetric matrix with entries k;; = (y;;+v;;) i (=1, 2,...,m).
ifi+#]
2
Considering natural constraints of non-negativity of prices,
0 <p; (=1, 2,...,m) (14)

the MPPO problem have been reduced to the maximization problem of the objective function (13) (which
is a quadratic form with symmetric matrix K) with constraint (14). Thus, the MPPO problem can be solved
by means of well-known quadratic programming methodology.

2.2.2. General definition of the Quadratic programming
The general quadratic programming problem (GQPP) can be written as minimize
Ax) =cx+%XTQ X, (15)
subject to
Ax Jb and x (010, (16)
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where

¢ - is an n-dimensional row vector describing the coefficients of the linear terms in the objective function;

Q - is an (n [1[Jn) matrix of the coefficients of the quadratic terms. Important to note that the matrix is
symmetric;

x — n-dimensional column vector of the decision variables;

A —is a (m [1[Jn) matrix of the constraints;

b - m-dimensional column vector of right-hand-side coefficients.

Solution of the above formulated problem is well known Karush-Kuhn-Tucker method. The method is
based on Lagrange multipliers approach. The Lagrangian function for the quadratic program is

L(x, p) = ex +(1/2) xQ x + (Ax — b),
where p is an m-dimensional row vector. The Karush-Kuhn-Tucker conditions for a local minimum are

given as follows.

oL
—20,j=1,n

ax]' -

c+xTQ+uA =0

<0,i=1,-,m

o
Ax—-b <0

daL 0.i=1
Xi7 = 'J= i n
jaxj

xT(cT+Qx+ATw) =0

uigi(x) =0,i=1,--,m
u(Ax —b) =0

x=20j=1,-,n

x=>0

u=0

We will not discuss the GQPP for some reasons, which will be clarified below, but only note that when
the objective function f(x) is strictly convex the problem has a unique local minimum which is also the
global minimum (the problem of local maximum can be easily converted into the problem of local minimum
by means of assigning opposite sign to objective function (15)).
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2.2.3. Existence of MPPO problem.

It is clear, that we must detect conditions of existence of maximum of defined MPPO problem.
Comparing the MPPO model (13), (14) with the GQPP model (15), (16) permits to make the following
conclusion: MPPO model is, from mathematical point of view, simpler than GQPP because of the simplest
constraints (14), which represents non-negativeness of variables. The latter means that one has to detect
existence of global maximum of the MPPO model. The maximum, if it exists, will be placed within the area
of positive values of variables. It implies, that we do not need to analyze constraints similar to constraints
(16), design Lagrange function and investigate it. Our task can be now formulated as calculating global
maximum of quadratic form (13).

Quadratic forms have one critical point, which may be one out of three types: maximum, minimum or
saddle points. Type of the points depends on signs of entries of the matrix K. In one dimensional case we
have guaranteed maximum, because of negative sign of slope k and positive sign of intercept a in (1), which
are consequences of economic lows. Situation is different in multi-dimensional case, where entries of the
matrix [, and therefore of the matrix K, may have different signs, which is determined by complicate
substitute-compliment correlative relationships. It means that in multidimensional cases we faced the
problem of existence of maximum of Total Revenue function, and that, in certain cases, the maximum may
not exist at all.

Now we should clarify a criterion to detect whether the MPPO problem has the maximum point in the
certain case. Such criterion can be constructed on the base of the Hessian matrix, which is the matrix of the
second derivatives of TR, quadratic forms with respect to prices.

Let’s denote the Hessian matrix as H, whereas the matrix of the first derivatives as - K. The mx1
vector of the first derivative of quadratic form (13) will be

TR\ = K®p + b (17)
where the entries of the matrix K™ are

(1)={2Vij ifi=j

e .., (g=1, 2, .m).
Y Yij +Vji lthJ(J )

It follows from (15) that the Hessian coincides with K.

It is well known fact that if the matrix H is positively definite at the critical point then quadratic form (13)
has strict minimum, if the matrix is negatively definite then quadratic form (13) has strict maximum. The
definitions are general, and directly cannot be used as a criterion to detect whether there is a maximum. With
this in view the following property of Hessian matrix can be used. Because the Hessian matrix is symmetric
matrix its eigenvalues are real numbers, which implies the following important properties of Hessian.

Suppose x is a critical point for a function fand A ; are the eigenvalues of the Hessian matrix. Then:
(a) If all of the eigenvalues A; > 0, (i=1, 2,...,m) then at point X is a strict local minimum of function f;
(b) If all the eigenvalues, 4; < 0 (i=1, 2,...,m) then at point x,, is a strict local maximum of function f.

(c) If at least one eigenvalue is positive and at least one eigenvalue is negative then at point x,is a saddle
point of function f.

The property (b) can be used as reliable and simple criterion of existing the optimal solution of the MPPO
problem. The criterion can be reformulated in our case: if all the eigenvalues of the Hessian of the objective
quadratic form of Total Revenue, Ai<0 (i=1, 2,...,m) then the problem has strict maximum.

We have already mentioned above that the maximum of the MPPO problem may not be existed at all, and
the reason of this is the complicate substitute-compliment correlative relationships. Thus we can confirm that
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for the multidimensional case absence of local maximum of TR, function of the MPPO is internal property
of Multi-Product situation, which is consequence of economic laws.

2.3. Identification problem of the parameters of the model of MPPO problem.

Besides the question connected with the negative definiteness of the matrix K (Hessian of the quadratic
form (13)), there exists another problem: identification of all entries of the matrix K. It is clear that without
reliable estimation these values on the base of existed observations cannot speak about solution of
optimization problem.

2.3.1. The seemingly unrelated regressions (SUR) model

The question arises: how one should estimate entries of the matrix I' in the system (12). The point is that
there exist two approaches [1],[2] .

The first one is estimating v; (i, j=1,2,...,m) on the base of each equation separately, assuming that the
errors & (i=1,2,...,m) are distributed independently, i.e. there are no cross-correlations between them (i,
&)=0 (i, j=1,2,...,m)" [2].

The second one is estimating y; (i, j=1,2,...,m) on the base of assumption that (&, &)#0 (i, j=1,2,...,m),
i.e. assuming that random variables of error g (i=1,2,...,m) are not independent. The latter leads to some
specific estimative problems. The especial class of models- the seemingly unrelated regressions (SUR)
model-were elaborated for such cases [1]. Below we gave short review and analysis of SUR models, because
this technology has decisive impact on our research [1],[3]

We start with mentioning that SUR models are case of more general Generalized Least Squares (GLS)
models (Zellner, 1962).

In this section we use the general notations for multivariate regression analysis:
M-number of dependent variables y; (i=1, 2,...,M);
N- number of observations for each i.

It means that we consider M different regressions for equal number of observations. Also we consider K;
independent variables Xj; (j=1, 2,..., Kj). To clarify the latter notation consider, for example, the variable
X3s. It represents the fifth variable in regression number 3 (the fifth variable for the third dependent variable
y3). Thus, regression i has K; independent variable X; Taking into account that there are N number of
observations for each I, one can say that we have M matrices of independent factors of sizes NxK; (i=1,
2,...,M) each.

Also, one can express it more compact way (Baltagi, 2008)in terms of matrix notation:
Yi =X B + &, (18)

where

i=L ..M

yjand g; are N-vectors and X is an N x K; matrix:

Kj = dim(f3;j) - the number of regressors for the jth regression.

The conventional assumptions of the classical regression models are assumed to hold for each regression j
Gg=1,.. M)

! Recall that we have assumed that errors &; are normal random variables, so in the case notions of independence and

non-correlation are coincide.
J |_
5,209
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E(yj) = X B, (19)
V(yj) = ojln, (20)
Where:

E - symbol of operation of calculation of expectation of a stochastic variable;
V- symbol of operation of calculation of variance of a stochastic variable;

oj -diagonal element covariance matrix of of a stochastic variable i;

In — identity matrix of rank N.

X is non-stochastic matrix of regressors;

rank (X;) = K;.

Note, that (20) means that classical regression assumes the dependent variables are uncorrelated. It is
very important assumption, as it justifies all inferences made based on the equation (19). Additional
assumption of multinormality of dependent variables y; (j = 1, ..., M), classical LS estimator of Bj can be
applied separately to each equation [4],[5].

We cannot assume it in our case, as it is clear, that prices on goods have cross correlations, due to
substitute and complimentarity effects. Namely, SUR model permits nonzero covariance between the error
terms &;; and & for a given observation i across regressions j and k [1],[5]:

Cov(gij , €ik) = i}, 21)
but

Cov(eij, &) =0 (22)
ifi#i.

If one considers prices of m goods as dependent variables, then (21) and (22) means that prices of
different goods are cross-correlated, but only within simultaneous observations. The latter assumption is very
interesting from business point of view.

In matrix form
Cov(gj,ex) = ojn.

The nonzero covariance across equations j and k defines specific features of estimation methodology of
SUR models (Generalized Least Squares (GLS)estimation) and its differences from classical Least Squares
(LS) estimation (Strutz, 2016).

To use compact and easy understandable matrix notations we introduce the following notations
(geometrical dimensions of the enumerated geometrical objects are shown below the objects) (Steeb, 2006)

1
= yz -a vector of M dependent variables;

Ym
&

&2
-a vector of M vector errors;

y
(MNx1)

&£ =
(MNx1)

Em
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B

= Ba|. a vector of K vectors of regression parameters to be identified
(KX 1) wes
Bu
and
X, 0 - 0
= O X.Z -block matrix of regressors,
(MNXK) : : :
0 0 - Xy

_ M
where K = Z]-=1 K;.
Now, it is easy to express expectation of the vector of M dependent variables as
E(y) = XB,
as it was expected.

To continue, we have to use tensorial algebra notations, specifically tensorial products (Kronecker’s
product) methodology [6]. According to its definition, for matrices A and B the product can be represented
as

allB alzB cee alMB
a;1B a,,B - a,yB

uep = @b e3)
aMlB O b aMMB

It is not difficult to show that such definition of the product leads to the following features of the tensorial
product [6]:

(AQ B)(C® D) = AC ® BD (24)
and
A®B)'=A"1QB, (25)

Now, one can write covariance matrix of the dependent variables as
V() = Z®ly

or in more detailed form

E1ily  €12ly - Emln

&y41 E,,1
V(y) = Z%N 22:N ’
(MNXMN) : :

eEmiln 0 o Emmin
where

011 012 = O1m

O' 0' cee sen
s o[ oz o (26)
(MxM)

Om1 Om2 *° OmMm

Using the notations introduced, the estimations for classical Least Squares (LS) can be expressed as
follows

Brs = (X'X)7'X'y =

1L
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X' X)) X1y
X' X)) X3y, 27)
X' X)) Xuym

whereas the generalized one (GLS) will be

Bers = X'C®I) T X)X ERIy) 1y =

= X'CTRWNX) X' E'®Iy}y =
ol XiX) oKXy - a™Mixy)| | X1(Ej0V )|
o (X3X1) 0?2 (X3Xy) o oPMXXw)| | X2 (B0 y) | (28)
oM Xy, X)) oM (XyXy) - oMM(Xi) Xu(X;0My;)

Here we used properties (24) and (25) of the Kronecker’s product (23).

Thus, one can see that GLS estimation methodology requires estimation of covariance matrix (26) and
calculation of its inverse. The latter is not always possible, because the matrix may not have inverse,
furthermore, matrix (26) can appear be ill-conditioned, so attempt to calculate its inverse implies non-
stability, which is hardly overcome problem.

Fortunately, specific character of MPPO problem allows significant simplification of GLS methodology.
Point is that in this problem we have the same matrix of regressors (demands) for all dependent variables
(prices). It means that for our problems the matrix of regressors can be represented as

Xo 0 - 0
_ 0 X, = 0 29)
(MNXK) : : : |
0 0 - X,

Substituting the (29) matrix X into (28) implies
Bors = (X' ERI) X)X EQIy) "ty =
((1M®X0)'(Z_1®IN)(IM®X0))_1(1M®Xo)'(2_1®11v)}’ =
= C7T'®XXo0) ' E T ®Xp)y

Y1
I ®XX) X5 | 72| =

M

(XoXo) ™" Xoy1

(XoX0) ™" X2

(XoXo) ™ Xoym
= Pus- (30)
Here again the properties (24) and (25) of the Kronecker’s product (23) were used.

The expression (30) shows very important result: if the matrix of the regressors is the identical for
all the regression equations (for all dependent variables), the GLS method is reduced to classical LS
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and one can estimate regressions equations independently. Such estimations and all inferences made
on their base are correct.

It allows avoiding above mentioned problems of possible ill-conditioness of the estimated covariance
matrices, which simplifies the mathematical model of the MPPO problem and makes it more reliable. Note,
that the covariance matrix of variables can now be estimated as

G = 5 (0 = XiB) (ke = XeB);

%k {0 j£k

where [?} — classical Least Squares (LS) estimations (30).

Going back to the notations of the regression equations based model (11) or (12) of the MPPO problem,
one can rewrite the latter results as

(d'd)~*d'ps
! -1 97
o |@ddp, | (31)

(d'd)~'d'pm

I'={y;}(,j=12,..,m) - mxm matrix of estimated parameters of the system of regression equations

(11).

3. Conclusion

As it was mentioned above, one can estimate regressions equations of the model (11) independently for
each item of goods. It means that we have right to use multivariable regression analysis technique, and
consider price of the each item of goods as a function of m demand, including proper demand. But the latter,
in turn, allows to use maximization methods also independently for each estimated regression equation.
Thus, we completely substantiated nature and methodology of the mathematical model of the MPPO
problem.
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