მუშავებისას ეფექტურ მეთოდს წარმოადგენს უნიკალური სავაჭრო შეთავაზება.

- მიმართვა უნდა იყოს გასაგები, შესრულებული მომხმარებლისთვის გასაგებად. მაგალითად, ჩვეულებრივ მომხმარებელთა უმრავლესობას არ ესმის სატელეკომუნიკაციო მოწყობილობისა და ელექტრონული აპარატურის რეკლამისას მეცნიერისეული ენა. რეკლამისუტყუარობა კი ნიშნავს მისი მტკიცებების საფუძვლიანობას მომხმარებელთა თვალში.
- სარეკლამო მიმართვამ უნდა გამოიწვიოს პოზიტიური ემოციები რეკლამირებადი საქონლისა ან კომპანიის მიმართ.
- სარეკლამო მიმართვის სტილი ჩვეულებრივ უნდა შეესაბამებოდეს მარკის სტილს. ისეთი საქონლის რეკლამაში, რომელიც ხასიათდება ფუნქციური უპირატესობებით, საჭიროა ამ უპირატესობების ხაზგასმა.
 ხოლო სავაჭრო მარკის ემოციური სახეები უნდა ექვემდებარებოდნენ ერთ კონცეფციას.
- თუ რეკლამა იცავს სტილის მუდმივობას დროის ხანგრძლივი პერიოდის განმავლობაში, მიმართვის ეფექტიანობა იზრდება. ბრენდ-მენეჯერები ხშირად სწრაფად და რადიკალურად ცვლიან რეკლამის სტილს, ან სარეკლამო სააგენტოს. ისინი მიიჩნევენ, რომ თუ მათ მობეზ-რდებათ საკუთარი რეკლამა, იგივე დაემართებათ მომხმარებლებსაც, რაც არასწორია. რეკლამის ხშირი და მძაფრი ცვლილებები ნეგატიურ ზემოქმედებას ახდენენ სავაჭრო მარკის იმიჯზე.
- აუცილებელია რეკლამის შესაბამისობა მომხმარებლის შიდა სამყაროსთან და რეალურ ცხოვრებასთან. კომუნიკაციები იწყება არა სარეკლამო მიმართვის გამგზავნიდან, არამედ მისი მიმღებიდან. ეფექტური მიმართვა უნდა შეესაბამებოდეს მისი ადრესატის შიდა სამყაროს, ასახავდეს მომხმარებლების იდეალებს, შეესაბამებოდეს მათ რეალურ ცხოვრებას.
- რეკლამამ უნდა მიიტანოს მომხმარებლამდე საქონლის განსხვავებული უპირატესობები და აუხსნას მას ამ საქონლის არჩევის მომგებიანობა. თუ რეკლამირებული პროდუქტი არაფრით არ განსხვავდება ბაზარზე არსებული სხვა საქონლისაგან მაშინ სარეკლამო ღონისძიებების წარუმატებლობის ალბათობა დიდია.
- გამოკვლევებმა უჩვენეს, რომ რეკლამის გამომსახველობას აქვს დიდი ეფექტი, განსაკუთრებით იმ სარეკლამო მიმართვებისათვის, რომელთა გაცნობაზე მომხმარებელი მხოლოდ რამდენიმე წამს ხარჯავს. გამოსახულება უფრო სწრაფად აღიქმება და უკეთესად გაიგება.

TEACHING METHODS OF COMPLEX PROBLEMS

Dorien DeTombe, Jeanne Tolordava

This article describes the case-based training practices and experimental economics, which are widely and successfully used in the worlds' many universities and educational institutions.

Real problems in society are often complex, not well defined and involve more than one domain. They are unlike the problems we were used to solve in school. Education focuses, if problem solving gets attention at all, on small domain related already solved problems.

Managers of profit and non-profit organizations are confronted with complex diffuse societal problems. Before these problems can be solved they have to be defined. Problem setting is defining the problem. Managers should get the opportunity to train problem setting. In order to enhance transfer the training should be as close as possible to the real life situation.

A free form game can be a good learning environment for training problem setting. In this game a problem setting situation can be simulated. By taking a case as a prototype for a complex problem, a case like implementation of the computer in education or the reorganization of healthcare in a country one can experience all the aspects of problem setting, like complexity, context boundness of the knowledge and data retrieval. Making a conceptual model of the problem in a semi-natural learning environment of a free form game with a case as a complex problem we hope to get some transfer to problem setting in real life situations.

This discussion is part of a research of the use of databases in setting complex problems.

This discussion focuses on the question of transfer of teaching problem setting and problemsolving. In order to enhance transfer the training situation should be as close to the real problemsetting situation as can be. Problemsetting with cases can be used to simulate real-life problemsetting. A free-form-

game can function as a semi-natural learning environment. In using cases the managers can experience all aspects of real life problemsetting like complexity, context boundness of the knowledge and data-retrieval in order to make a conceptual model of the problem.

Teaching environment related to knowledge levels. By setting and solving problems one should be aware that one can distinguish several levels of knowledge. Each level of knowledge needs a different learning environment and a different guiding (Klabbers,1989). The first level is maintenance knowledge, context free learning of rules and facts. This is presented as universal time-invariable knowledge. Here the teacher is the expert in a reproducing learning environment. In schools much attention is given to the learning of facts and rules within a special domain. This is what one calls maintenance learning. Most of the time the learning of facts and rules are just handed over to the pupils.

The second level is context dependent knowledge, so-called innovation learning. This needs a heuristic guided learning environment in which the teacher is the guide. An aspect of this level is that one should be aware that the knowledge of the first level and second level exists and that there can be blind spots in the knowledge. This requires metacognitive skills in a self-steering environment. An environment where people can be active in learning autoregulation and autocontrolled skills. In this environment the teacher is the facilitator.

A free form game can function as an environment in which autoregulation and autocontrolled skills can be trained. The problems where Artificial Intelligence and education focus on are mostly domain related problems. Problems of which the answer is known. Little attention is given to the context boundness of the knowledge, to innovation learning or to the idea of living in changing situations in a changing world.

Real societal problems. In education there is not much opportunity to get acquaintance with setting and solving complex problems. To be able to handle these kind of problems managers should get some opportunity to train setting complex problems in an educational setting. In order to enhance transfer this educational setting must be as close to the real situations as possible. One should look for a learning environment where the real situation can be simulated. A conference room as learning environment, where a free form game is played with a case as a complex problem all aspects of problem setting can

be trained. Cases imbedded in a free form game can be a good semi-natural learning environment in which context boundness, different knowledge levels and information retrieval can be trained.

Setting a case like healthcare or implementation computers into education can simulate the problemsetting of a real societal problem. In these cases one must in cooperation with other people define the domains, the aggregation level, the involved organizations, the time scope and train data retrieval in trying to make a conceptual model of the problem.

Setting a case can be imbedded in a free form game. A free form game is a game with as little rules as possible, where in a non threatening situation people can learn to practice problem setting of complex domain exceeded problems. A free form game gives the participants the opportunity to experience the context boundness of each others knowledge. The context boundness is the personal knowledge of each participant, the knowledge that is colored by experience, culture, position and discipline by which she or he considers the problem. Beside this the participators may have divergent interests and different power.

This context boundness can cause serious communication problems. In playing a free form game one can learn to deal with hidden agendas, divergent interests, experience the blind spots in the knowledge, experience changing levels from a outsiders view point to the insider point of view and the complexity of the problem. In setting complex problems one meets not only the boundaries of ones own knowledge, but also the boundaries of the knowledge in the field.

In order to get full profit of the training the actors should be able to handle in accordance to their own capacities and to their own interest. In a free form game with a special case as a problem setting item the problem space will not be narrowed by a teacher to the space in which one must search for a solution

The actors can try to define the problem space themselves. In this kind of free form game the game-operator has a role as a facilitator. The debriefing at the end of the game can be used to enhance learning. The actors should be made conscious of their own behavior during the play. Metacognitive activities as autoregulation and autocontrol should be enlistened to enhance transfer. In a free form game the participants have the chance to deal 'real life cases' with missing data using rules of thumb under time pressure like in real-life,

without making too much accidents.

The conference room with cases as prototypes for complex problems can function as a learning environment in which managers can carrying on policy exercises. In a conference room, which can look like a boarding room the managers can be trained in a semi-natural learning environment.

Playing a free form game with a case as a prototype for problem setting in a conference room one can simulate the natural problem setting situation in semi-natural learning environment.

In this way we hope to find some transfer of the trained knowledge and skills for setting complex domain exceeded problems to the setting complex real-life problems.

The next direction, which also helps in acquiring knowledge and habits, is economical experimenting and modeling. In this case, on top of training, another objective is also reached, namely, behavioral research of the participants of each experiment.

It has to be noted that economic experiments, in essence, are comparable to that of Physics, Chemistry and other natural sciences, with the only difference that they are carried out on individuals, who take economic decisions in the settings of an experimental laboratory (computer class), where people are playing business games.

During decades it was believed that the experimental method is inapplicable in economics. But addressing the experience of psychological science has laid, on the analogy, a foundation for the experimental economics, the essence of which is modeling of artificial situations with all the behavioral parameters of economic subjects controlled by experimenter in the laboratory settings. In the laboratory experiments, similarly to the psychological experiments, the group of participants is assigned a task of decision-making, allowing for understanding the typical behavior of economic agents under the controlled laboratory conditions. One of the advantages of such method is the possibility of a clear definition of the choice of the behavior model in the given economic situation, while analyzing the procedure of decision-making and factors, determining the final choice of an agent from a diversity of choices available in real life.

The basic methodology principle of the experimental economics is application of experimental methods for testing how justified the economic theories are, which nowadays constitutes the inseparable part of scientific research.

Experimenting in economics implies series of principal specifics in comparison to the experiments in natural sciences. Experimental economics may be characterized as testing of postulates of the economic theory by action of individuals that act as prototypes of executive officers that are actually involved in deciding over one or another issues under the controlled situations. So far as the subject of an experiment is a human being and all its actions are determined by its individual identity, it's practically impossible to achieve an absolute repetitiveness of the experiment and predictability of results. Unfortunately, many parameters of human behavior, (e.g. risk appetite) cannot be controlled in the frame of experiment. For that reason for obtaining the valid output it is necessary to set forth the specific rules for arranging and carrying out the experiment. Currently the vast field of knowledge is being intensely developed within the Experimental Economics, which defies such limitations – this is computer experimenting, where the perspectives of the experimental economics are huge.

It has to be noted that economic experiments, in essence, are comparable to that of Physics, Chemistry and other natural sciences, with the only difference that they are carried out on individuals, who take economic decisions in the settings of an experimental laboratory (computer class), where people are playing business games.

During decades it was believed that the experimental method is inapplicable in economics. But addressing the experience of psychological science has laid, on the analogy, a foundation for the experimental economics, the essence of which is modeling of artificial situations with all the behavioral parameters of economic subjects controlled by experimenter in the laboratory settings. In the laboratory experiments, similarly to the psychological experiments, the group of participants is assigned a task of decision-making, allowing for understanding the typical behavior of economic agents under the controlled laboratory conditions. One of the advantages of such method is the possibility of a clear definition of the choice of the behavior model in the given economic situation, while analyzing the procedure of decision-making and factors, determining the final choice of an agent from a diversity of choices available in real life.

The foundation for it was laid by Vernon Smith, the 2002 Nobel Laureate in Economics. The prize was awarded for his work in the research of the alternative market mechanisms through the network algorithm methodology. As The Nobel Committee has noted, on awarding this prize: "Controlled laboratory experiments have emerged as a vital component of economic research and, in certain instances, experimental results have shown that basic postulates in economic theory should be modified. This process has been generated by researchers in two areas: cognitive psychologists who have studied human judgment and decision-making, and experimental economists who have tested economic models in the laboratory."

The basic methodology principle of the experimental economics is application of experimental methods for testing how justified the economic theories are, which nowadays constitutes the inseparable part of scientific research. Experimenting in economics implies series of principal specifics in comparison to the experiments in natural sciences. Experimental economics may be characterized as testing of postulates of the economic theory by action of individuals that act as prototypes of executive officers that are actually involved in deciding over one or another issues under the controlled situations. So far as the subject of an experiment is a human being and all its actions are determined by its individual identity, it's practically impossible to achieve an absolute repetitiveness of the experiment and predictability of results. Unfortunately, many parameters of human behavior, (e.g. risk appetite) cannot be controlled in the frame of experiment. For that reason for obtaining the valid output it is necessary to set forth the specific rules for arranging and carrying out the experiment. Currently the vast field of knowledge is being intensely developed within the Experimental Economics, which defies such limitations - this is computer experimenting, where the perspectives of the experimental economics are huge.

This new field of economic science has gone the way from the separate simulation models used in teaching towards the important tool of research of the complex economic systems, which allows as for analyzing of their dynamics, so for forecasting their behavior.