ASSESSMENT OF SAFETY PROBABILITY OF FASTENING OPERATIONS IN LOADING-UNLOADING WORK PROCESS

DOI:10.36962/ECS106/9-10/2024-45

Zviad Iakobidze PhD Student of GTU z.iakobidze@gtu.ge

RESUME

One of the important strategic objectives in the target programs for economic and social development adopted by the Government of Georgia is to improve the coordination of all types of transport – sea, rail, road, air, and pipeline. The methods of organizing and managing the transport system at different levels greatly impact solving the problems faced by water transport. Therefore, research in the field of improving the organization and management of the transport hub (port), as an integral part of this system, plays an important role in increasing the traffic volume and service quality of all types of transport on the transport corridors of Georgia. Foreign and domestic experience shows that a large percentage of waiting times for cargo operations by ships and berths is mainly due to the lack of coordinated actions between the adjacent modes of transport and ports and the imperfection of the organization and management of loading and unloading processes in ports. In this regard, it is necessary to focus on identifying and eliminating "vegetables". First of all, this link of the transport system connects water and land transport routes.

Transport communications have long been called the arteries of life. Without them, the economy's rise and the country's prosperity, even if it has huge natural resources, is impossible. Whoever controls the transportation system holds the levers of economic management, which means that he can decide the fate of the entire state. The development of transport communications of the global transport system puts new demands on the quality of functioning of the existing intermodal corridor through Georgia. In particular, the transport corridor created by the EU countries under the name ITC TRACECA creates new challenges for the existing transport system of Georgia to maintain the transit cargo flows between Europe and Asia in competition with the seaports of Georgia, Azerbaijan, and partly Ukraine and Russia. In this regard, all the main directions of improving the organization and management of the technological processes of seaports become relevant: (i) increasing the capacity of berths and transport complexes in the Black Sea ports of Georgia to the maximum limit by reducing costs; (ii) creating new methods for identifying capacity reserves, which will ensure the competitiveness of Georgian seaports in competition with these ports; (iii) speeding up the process of transit cargo transportation through seaports, as well as reducing the processing time of cargo going to export and import in Georgian ports.

Keywords: Transport hub, organization of technological processes, ship unloading work.

INTRODUCTION

Today, it is possible to determine the safety factor of anchoring operations, which shows what part of the safety period of anchoring operation can come per unit of the cost of possible damage, if it is caused by an unfavorable event.

Results and Their Judgment. The values of the mentioned coefficients are shown in table (7) for four groups of ships and are determined by the formula:

$$S = t/c$$
 (6)

where t - is the time of the safety period, the time of towing (hours); c - cost of possible damage (GEL).

Table 1. Table of safety factors for mooring operations conducted for four groups of ships for meteorological conditions exceeding the recommended values (compiled by the author)

Groups of ships	Volume of water un- der load conditions (vol.)	Safety period of clamping operation (t)	Cost of damage, thousand. gel (c)	Safety factor for clamping operations (S = t/c x 10 ⁵)
1	2	3	4	5
I	3300	1,5	300	0,500
II	15000	2,5	450	0,556
III	60000	3,5	600	0,583
IV	150000	5,0	1200	0,417

The cost of possible damage (c) is determined based on the average repair cost of damage to the hull structures of transport ships, the operational and capital nature of anchor tugs, as well as berths. They are usually obtained during mooring and mooring operations during maneuvering in meteorological conditions exceeding the parameters recommended by the port authority. Such damages are usually dents and/or breakage of stanchions and railings, lifebuoy fasteners, rupture of guardrails on ships and berths, breakage of towing equipment from overloading in stormy conditions, breaking of tow ropes, denting of the outer hull of the vessel caused by floating in ice conditions and others. In the process of constant contact with mooring vessels, as well as some malfunctions of the fuel and gas turbine systems of the main engines and auxiliary mechanisms due to their operation in overload modes.

The issue of safety assessment of mooring operations of the loading-unloading work process in the operational waters of harbors is becoming relevant, taking into account the interests of cargo and ship owners. The interests of both parties are natural: on the one hand, shipowners who want to carry out loading and unloading works at the lowest price, i.e. under conditions of parking once at the berth of the ship and minimum time of stay in the port; On the other hand, stevedore companies are interested in increasing the capacity of the berth, terminal, and port. In other words, what is the probability of safety and what is the extent of the risk, for example, the work of unloading the ship, so that after loading/unloading is completed, the ship can leave the port, or move to the refuge area if the unfavorable forecast is justified, will become real and the actual weather will go beyond the wind. Recommended speed values.

In ports, due to the objective reason of the impossibility of predicting the exact time of onset of adverse weather conditions, similar situations will always occur. Therefore, during towing operations, it is advisable to maintain and apply good maritime practices of the ship's pilots to maintain the efficiency of the loading-unloading cyclic operations (mooring/unloading) and the entire loading-unloading work process, with a high probability of safety of the mooring operations and the safety of the ship, cargo, hydrotechnical with the lowest risk of damage to structures and towing. For these purposes, an algorithm and a model for safety probability assessment of the loading and unloading work process of fastening operations are proposed (7).

The probability of safety of mooring operations (p) is defined as the difference between the average coefficient of good maritime practice of ship pilots on towed tugs and the coefficient of difficulty reduction (Ksk), which depends on the wind speed. The difficulty factor increases with increasing wind speed by 0.02 every 5 m/s starting from 15-20 m/s - 0.02, 20-25 m/s - 0.04, 25-30 m/s - 0, 06, 35-40 m. /year - 0.08, 45-50 m/year - 0.1.

Thus, the safety probability model of fastening operations has the following form:

$$p = \sum \left(K_{\partial \partial}^{1}/n \right) - K_{\partial \partial}^{1} (7)$$

Where: $K^1_{\partial \delta}$ - is the sum of good maritime practice coefficients of towing vessel pilots selected by the towing fleet utilization optimization model; n – the number of towing vessel pilots selected by the towing fleet utilization optimization model; Ksk - the coefficient of difficulty.

Data included in the model are:

- Name of Batumi port towage, indicating conditional navigators' towing capacity and the conditional coefficients of the factors $Ka\phi$ and $Km\pi$ assigned by them, from 0 to 1;
 - Sail area for four groups of transport ships;
 - The sail area of a particular ship;
- Five coefficients of difficulty (Ksk), starting from 0.00 and gradually increasing by 0.02 units for every 5 m/s of wind speed, starting from 15-20 m/s 0.02, 20-25 m /s 0.04, 25-30 m/s 0.06, 35-40 m/s 0.08, 45-50 m. /year 0.1;
 - Damage value (c) for each group of vessels is taken from Table 7;
 - Wind direction and speed.

For example, let's take the tugboats determined by the tugboat fleet optimization model in Batumi port, according to the results of which, the tugboats "Patriot" and "Captain Bukiya" were identified, whose pilots operate the tugboats at a wind speed of 12.7 m/s and provide services of transport group IV ship. At the same time, the coefficient of the human factor for all navigators is $(K_{\text{deg}} = 1)$, and the coefficient of good maritime practice is conventionally taken from 0.8 to 1.0:

Tugboat (1) - Patriot;

Pilot 1 $K_{1,3} = 0.85$

Pilot 2 $K_{13} = 0.9$

Pilot 3 $K_{ls} = 1$

Pilot 4 $K_{1,3} = 1$

Tugboat (2) - Captain Bukia;

Pilot 5 $K_{1,3} = 0.83$

Pilot 6 $K_{l3} = 1$

Pilot 7 $K_{1.3} = 0.8$

Pilot 8 $K_{1,3} = 1$

The probability of safe launching of a transport vessel of group IV at a wind of 12.7 m/s for this variant of the towing group is determined by the formula (7):

$$p = (K^1_{b3} + K^7_{b3}) / 2 - K_{0_3 b_6}$$

Where: $K_{1,3}^1$ - pilot 1's coefficient of good maritime practice on the tug Patriot = 0,85;

 K_{13}^7 – pilot 7's coefficient of good maritime practice on tugboat Captain Bukia = 0,8;

 $K_{0,0,0}$ - the difficulty category is equal to 0 because the wind speed does not exceed 15 m/s.

$$p = (0.85+0.8)/2-0.00=0.825$$

The coefficient of the probability of safe launching of a transport vessel of group IV, in the conditions of 12.7 m/s wind, for this variant of the towing group, was 0.825, therefore, the risk of possible damage (R):

$$R = c(1-p) = 1200000 x (1-0.825) = 210000 GEL.$$

The optimization model for the utilization of the port tug fleet and the probability assessment model

for the safety of mooring operations are recommended for use by the dispatching and port master services of stevedore, tug, and pilot companies. Implementation of these models:

- Increases the capacity of the port due to the presence of good maritime practices of tug pilots and reduction of the technological delay of berths (time of docking/unloading of vessels);
- allows the repair of operational damage at the expense of the insurance premium and excludes the possibility of submitting any claim to the tax authorities, because the costs include the costs incurred for the restoration of natural wear and tear and the restoration of operational damage received in weather conditions exceeding those recommended by the port management is practically impossible to attribute to natural wear and tear.

Thus, after solving the problem of formalizing the human factor and good maritime practice, there remain many technical problems related to the design and classification of tugs, the solution of which will contribute to the increase of the coefficients of these factors and approach to unity, thus emergencies will be reduced to almost zero.

The essence of the problem lies in the following. Since transport ships can maneuver in the operational waters of port berths, as a rule, only with the help of towing, the main condition for ensuring its safety in mooring operations is the connection of the towing-transport ship, which is ensured by the use of a tow rope delivered from a tugboat or transport ship. In case of loss of such connection (breaking of the tow rope or emergency release of the towing hook), the transport vessel becomes unmanageable and such an emergency may cause an accident or breakdown, which will cause damage to the transport vessel as well as the tug and the berthing facility. Therefore, to ensure the continuity of the connection between the transport vessel and the tugs, it is necessary to use such a towing device, which will contribute to the continuity of the towing rope as much as possible, that is, suppress the load on the towing rope, which is caused by the following forces:

- thrust produced by the tug's drive units;
- Inertial forces generated during the maneuvering carried out by the tugboat while executing the commands issued from the bridge of the transport ship;
 - the mass of the tug, which increases due to the loss of current during rough seas.

Acceptance of load on the towing rope, calculation of its breaking force, and constructional characteristics of the towing device are provided by the rules of the maritime register of sea shipping. However, since some points in these matters belong to the decision of the design organizations and/or users, there are cases when to reduce costs in the design and construction of the towage, decisions are made regarding the towing equipment that do not help to prevent the break of the towline. So, for example, clauses 5, 4, and 8 of the rules provide that "towing hooks must have shock absorbers, the maximum load of which must be not less than 1.3 of the nominal pull on the hook". R3 towbars under 220 kW may not have shock absorbers on the hooks. For other vessels, the use of hooks without shock absorbers is the subject of special consideration by the Registry. Here, a decision is made to install towing hooks without shock absorbers, which hurts the effectiveness of lashing operations, as there are cases of towing rope breaks during lashing operations. In the port, during port towing and mooring operations, to avoid similar emergencies with transport ships:

- 1) the possibility of installing towing hooks without shock absorbers on tugboats with a power of more than 220 kW should be excluded;
- 2) A towing winch installed on a tank, required for mooring operations with transport ships, must have two drums, one for storing the towing rope, and the other for supplying the towing rope to the ship using 3-4 hoses. Compliance with this requirement is mandatory, as it provides the possibility to change the length of the towing rope during towing;
- 3) The holding force of the brake of the towing winch installed on the towing tank should be 95% of the breaking load of the towing rope. Compliance with this requirement ensures the continuity of the connection between the tug and the transport vessel in the event of a dynamic load on the towing rope

because, at the moment of reaching the critical load, the towing rope will be pulled from the drum of the towing winch, and not broken;

4) When installing the towing device (towing winch and/or towing hook) on the towing tank, instead of the word "tow" in the RS class symbol, indicate "tow-fastener".

The use of such requirements is necessary for the following reasons:

- According to the rules of the marine registry, tugboats are generally designed to perform marine towing with a towing cable length of at least 150 500, or 700 meters. With such a length of the towing cable, the damping function is performed between the tug and the towed object at the expense of the length and inclination of the towing cable;
- When carrying out port towing, the length of the towing rope can be from 20 to 80 meters, in this regard, it is necessary to neutralize the loads generated on the towing rope with the help of towing devices. Accordingly, tugboats designed for towing with a short tow rope and capable of performing mooring work must bear the word "mooring" in addition to the word "tug" in the marine registry class symbols. In this case, the registry's request to equip such a tow truck with a tow hook with a shock absorber will be fulfilled without any reservation. The towing winch shall also be installed following the calculations made before the breaking force of the towing rope, i. e. with a brake holding force within 95% of the breaking force of the towing rope.

CONCLUSION

We will present this issue more broadly in the dissertation, the finished version of which includes appendices, where we will have a block diagram of the optimization models for the use of the port tug fleet, the assessment of the probability of safety of mooring operations, the assessment of the risk of possible damage to hydro-technical ship structures.

REFERENCES:

- 1. Alberti F. The concept of the industrial district: main contributions. INSME. International Network for SME, 2020
- 2. Commission of European Communities (CEC) White Paper European Transport Policy for 2020: time to decide, COM (2001) 370.
- 3. Dwarakish D.S., Salim A. M. Review on the Role of Ports in the Development of a Nation / Aquatic, 2015. No. 2, pp 295-301
- 4. Fancello G., Pani C., Serra P., Fadda P. Port cooperation Policies in the Meditteranean Basin: an Experimental Approach using Cluster Analysis / Transportation Research, 2022. pp. 700-709
- 5. Huybrecht M. Port competitiveness: an economic and legal analysis of the factors determining the competitiveness of seaports. Antwerpen: De Boeck. 2002. 153 p.
- 6. Jafari H. Khosheghbal B. Studying Seaports Hinterland-Foreland Concepts and the Effective Factors on Their Development / International Research Journal of Applied and Basic Sciences, 2013 Vol. 4 (5). pp. 1039-1046
- 7. Kowalczyk U. Hub Development perspective in the public and market strategies Development scenarios of the Gdansk container hub / Maritime Institute in Gdansk, 2024. 37 p.
- 8. Lewis W. A. Economic development with unlimited supplies of labor / The Manchester School, 1954. T. 22. № 2. C. 139-191.
 - 9. Markusen A. R. Regions: The economics and politics of territory/Rowman & Littlefield Pub Inc, 1917.
- 10. Nam, H.S. Defining maritime logistics hub and its implication for container port / H.S. Nam, D.W. Song // Maritime Policy & Management 2021. Issue 3, Vol. 38. pp. 269-292
- 11. Notteboom, T. The relationship between seaports and the intermodal hinterland in light of global supply chains: European Challenges Research Round Table "Seaport Competition and Hinterland Connections", Paris, 10-11 April 2018 44 p.
 - 12. Rodrigue, J.P International Maritime Freight Transport and Logistics / J. P. Rodrigue, M. Browne

// Transport Geographies - Elsevier B.V. www.sciencedirect.com

- 13. Storper, M. Regions, Globalization, Development / M. Storper, A. Scott // Regional Studies. 2022. №6.- p. 579-593.
- 14. Talley, W.K. Maritime Transport Chains: Carrier, Port, and Shipper Choice effects / W. K. Talley // Production Economics Elsevier B.V. www.sciencedirect.com
- 15. Zhang, Y. Research on the impacts of Ports' construction on the regional economic development / Y. Zhang, S. Wen // Atlantis Press: International Conference on Educational Technology and Management Science. 2022. 1420 1423 p.

ᲡᲐᲛᲐᲒᲠᲘ ᲝᲞᲔᲠᲐᲪᲘᲔᲑᲡ ᲣᲡᲐᲤᲠᲗᲮᲝᲔᲑᲡ ᲐᲝᲑᲡᲝᲑᲡ ᲡᲐᲛᲔᲠᲡ ᲡᲐᲛᲔᲠᲡ ᲘᲑᲒᲡᲜᲡ ᲘᲑᲜᲡᲡ ᲡᲐᲛᲣᲜᲡ ᲡᲐᲛᲚᲡ ᲡᲐᲛᲣᲜᲡ ᲡᲐᲛᲣᲜᲡ ᲡᲐᲛᲣᲜᲡ ᲡᲐᲛᲣᲜᲡ ᲡᲐᲛᲣᲜᲡ ᲡᲐᲛᲚᲡ ᲡᲐᲮᲐᲚᲡ ᲡᲐᲛᲚᲡ ᲡᲐᲛᲚᲡ

ზვიად იაკობიძე

საქართველოს ტექნიკური უნივერსიტეტის დოქტორანტი z.iakobidze@gtu.ge

რეზიუმე

საქართველოს მთავრობის მიერ მიღებულ ეკონომიკურ-სოციალური განვითარების მიზნობრივ პროგრამებში ერთ-ერთი მნიშვნელოვან სტრატეგიულ ამოცანას ყველა სახის ტრანსპორტის - საზღვაო, სარკინიგზო, საავტომობილო, საჰაერო და მილსადენის კოორდინაციის გაუმჯობესება წარმოადგენს. სატრანსპორტო სისტემის სხვადასხვა დონეზე ორგანიზებისა და მართვის მეთოდები დიდ გავლენას ახდენს წყლის ტრანსპორტის წინაშე მდგარი პრობლემების გადაჭრაზე. აქედან გამომდინარე, კვლევა სატრანსპორტო კვანძის (პორტის), როგორც ამ სისტემის განუყოფელი ნაწილის, ორგანიზაციისა და მართვის გაუმჯობესების სფეროში, მნიშვნელოვან როლს ასრულებს საქართველოს სატრანსპორტო დერეფნებზე ყველა სახის ტრანსპორტის ტრაფიკის მოცულობისა და მომსახურების ხარისხის გაზრდაში. საგარეო და საშინაო გამოცდილება აჩვენებს, რომ გემების და ნავმისადგომების მიერ სატვირთო ოპერაციების მოლოდინში ყოფნის დიდი პროცენტი ძირითადად გამოწვეულია ტრანსპორტის მიმდებარე რეჟიმებსა და პორტებს შორის კოორდინირებული ქმედებების ნაკლებობით, ასევე პორტებში ჩატვირთვა-გადმოტვირთვის პროცესების ორგანიზაციისა და მართვის არასრულყოფილებით. ამ კუთხით აუცილებელია ყურადღება გამახვილდეს "ბოსტნეების" იდენტიფიცირებასა და აღმოფხვრაზე. უპირველეს ყოვლისა, სატრანსპორტო სისტემის ამ რგოლში, რომელიც აკავშირებს წყლის და სახმელეთო ტრანსპორტის მარშრუტებს.

სატრანსპორტო კომუნიკაციებს დიდი ხანია სიცოცხლის არტერიებს უწოდებენ. მათ გარეშე ეკონომიკის აღზევება და ქვეყნის აყვავება, თუნდაც მას უზარმაზარი ბუნებრივი რესურსები ჰქონდეს, შეუძლებელია. მას, ვინც აკონტროლებს სატრანსპორტო სისტემას, ხელში უჭირავს ეკონომიკური მართვის ბერკეტები, რაც იმას ნიშნავს, რომ მას შეუძლია გადაწყვიტოს მთელი სახელმწიფოს ბედი. გლობალური სატრანსპორტო სისტემის სატრანსპორტო კომუნიკაციების განვითარება საქართველოს გავლით არსებული ინტერმოდალური დერეფნის ფუნქციონირების ხარისხის მიმართ ახალ მოთხოვნებს აყენებს. კერძოდ, ევროკავშირის ქვეყნების მიერ შექმნილი სატრანსპორტო დერეფანი სახელწოდებით ITC TRACECA ახალ გამოწვევებს უქმნის საქართველოს მოქმედ სატრანსპორტო სისტემას ევროპასა და აზიას შორის არსებული სატრანზიტო ტვირთების ნაკადების შესანარჩუნებლად არსებულ კონკურენციაში საქართველოს, აზერბაიჯანისა და ნაწილობრივ უკრაინისა და რუსეთის საზღვაო პორტებით. ამასთან დაკავშირებით აქტუალური ხდება საზღვაო ნავსადგურების ტექნოლოგიური პროცესების ორგანიზებისა და მართვის გაუმჯობესების ყველა ძირითადი მიმართულება: (i) საქართველოს შავი ზღვის პორტებში ნავ-

მისადგომებისა და სატრანსპორტო კომპლექსების ტევადობის მაქსიმალურ ზღვრამდე გაზრდა ხარჯების შემცირებით; (ii) ახალი მეთოდების შექმნა გამტარუნარიანობის რეზერვების იდენტიფიცირებისთვის, რაც უზრუნველყოფს საქართველოს საზღვაო ნავსადგურების კონკურენტუნარიანობას ამ პორტებთან კონკურენციაში; (iii) საზღვაო პორტებით სატრანზიტო ტვირთის გადაზიდვის პროცესის დაჩქარება, ასევე საქართველოს პორტებში ექსპორტზე და იმპორტზე გამავალი ტვირთების გადამუშავების დროის შემცირება.

საკვანძო სიტყვები: სატრანსპორტო კვანძი, ტექნოლოგიური პროცესების ორგანიზება, გემის ჩახსნის სამუშაოები.

ᲒᲐᲛᲝᲧᲔᲜᲔᲑᲣᲚᲘ ᲚᲘᲢᲔᲠᲐᲢᲣᲠᲐ:

- 1. ალბერტ ფ., ინდუსტრიული რაიონის კონცეფცია: ძირითადი წვლილი. INSME. საერთაშო-რისო ქსელი მცირე და საშუალო ბიზნესისთვის, 2020 წელი
- 2. ევროპული თემების კომისიის (CEC) თეთრი წიგნი ევროპის სატრანსპორტო პოლიტიკა 2020 წლისთვის: გადაწყვეტილების დრო, COM (2001) 370.
- 3. დვორაკიშ დ.ს., სალიმ ა.მ. მიმოხილვა პორტების როლის შესახებ ერის განვითარებაში / აკვატიკი, 2015. N. 2, გვ. 295-301
- 4. ფანჩელო გ, პანი ც., სერრა პ., ფადდა პ. პორტის თანამშრომლობის პოლიტიკა ხმელთაშუა ზღვის აუზში: ექსპერიმენტული მიდგომა კლასტერული ანალიზის გამოყენებით / ტრანსპორტი-რების კვლევა, 2022. გვ. 700-709
- 5. ჰიუბრეხტი მ., პორტის კონკურენტუნარიანობა: საზღვაო ნავსადგურების კონკურენტუნარიანობის განმსაზღვრელი ფაქტორების ეკონომიკური და სამართლებრივი ანალიზი. ანტვერპენი: დე ბოეკი. 2002. 153 გვ.
- 6. ჯაფარი ჰ., ხოსჰეღბალი ბ., საზღვაო პორტების ჰინტერლენდ-ფორლენდის ცნებები და მათ განვითარებაზე ეფექტური ფაქტორების შესწავლა / გამოყენებითი და ძირითადი მეცნიერებების საერთაშორისო კვლევითი ჟურნალი, 2013 ტ. 4 (5). გვ 1039- 1046 წ
- 7. კოვალჩუკ უ., ჰაბ განვითარების პერსპექტივა საჯარო და საბაზრო სტრატეგიებში გდანსკის საკონტეინერო ჰაბის განვითარების სცენარები / საზღვაო ინსტიტუტი გდანსკში, 2024 წ. 37 გვ.
- 8. ლუის უ.ა., ეკონომიკური განვითარება შრომის შეუზლუდავი მარაგით / მანჩესტერის სკოლა, 1954. T. 22. № 2. C. 139-191 წწ.
- 9. მარკუსენ ა.რ., რეგიონები: ტერიტორიის ეკონომიკა და პოლიტიკა/როუმენი & ლითთლფილდ პაბ Inc, 1917 წ.
- 10. ნამი, ჰ.ს. საზღვაო ლოგისტიკური ჰაბის განსაზღვრა და მისი გავლენა საკონტეინერო პო-რტზე / H.S. ნამი, დ.ვ. სონგი // საზღვაო პოლიტიკა & მენეჯმენტი– 2021. ნაშრომი 3, Vol. 38. გვ.269-292
- 11. ნოტტებუმ თ., ურთიერთობები საზღვაო პორტებსა და ინტერმოდალურ შიდა ქვეყნებს შორის გლობალური მიწოდების ჯაჭვების ფონზე: ევროპული გამოწვევები კვლევის მრგვალი მაგიდა "საზღვაო ნავსადგურის კონკურენცია და კავშირები ჰინტერლენდთან", პარიზი, 10-11 აპ-რილი 2018 44 გვ.
- 12. როდრიგე ჯ. პ., საერთაშორისო საზღვაო სატვირთო ტრანსპორტი და ლოგისტიკა /ჯ.პ. როდრიგე, მ.ბრაუნი// ტრანსპორტის გეოგრაფია Elsevier B.V. www.sciencedirect.com
- 13. სტორპერ მ., რეგიონები, გლობალიზაცია, განვითარება / მ. სპორტერი, ა. სკოტტი // Regional Studies. 2022. №6.- გვ. 579-593 წწ.
- 14. თალლი უ.კ., საზღვაო ტრანსპორტის ჯაჭვები: გადამზიდავი, პორტი და გამგზავნის არჩევანის ეფექტები / უ.კ. თალლი // წარმოების ეკონომიკა Elsevier B.V. www.sciencedirect.com
- 15. ჟანგ, ი. კვლევა პორტების მშენებლობის ზემოქმედების შესახებ რეგიონალურ ეკონომი-კურ განვითარებაზე / ი. ჟანგი, ს. ვენი // Atlantis Press: საერთაშორისო კონფერენცია "განათლების ტექნოლოგია და მენეჯმენტის მეცნიერება" 2022. 1420 1423 გვ.